目录
1. 二叉搜索树
1.1 概念
- 二叉搜索树的概念:二叉搜索树又称二叉排序树,或者是一棵空树,或者是具有以下性质的二叉树:
- 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;
- 它的左右子树也分别为二叉搜索树。
1.2 基本操作
1.2.1 查找
- 如下图
1.2.2 插入
- 树为空,则直接插入,返回ture;
- 树不为空,按二叉树搜索树的性质查找插入位置,插入新节点。
1.2.3 删除
- 二叉搜索树删除元素,先查找元素是否在搜索树中,若不存在则返回,若存在有以下四种情况:
- 要删除的节点无孩子;
- 要删除的节点只有左孩子节点;
- 要删除的节点只有右孩子节点;
- 删除的节点有左、右孩子节点。
3. 特殊情况
- 最优情况下,二叉搜索树为完全二叉树,其平均比较次数为: log2^N;
- 最差情况下,二叉搜索树退化为单支树,其平均比较次数为: N/2。
2. AVL树
2.1 概念
- 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树O(n)(两种极端情况),查找元素相当于在顺序表中搜索元素,效率低下;
- 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之 差的绝对值不超过1,即可降低树的高度,从而减少平均搜索长度;
- 高度平衡二叉搜索树(高度差的绝对值不超过1)
2.2 性质
- 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树 ;
- 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1),平衡因子=右子树的高度-左子树的高度;
2.3 基本操作
2.3.1 插入
- AVL树的插入过程可以分为两步: 1. 按照二叉搜索树的方式插入新节点;2. 调整节点的平衡因子。
【调节平衡因子】
2.3.2 旋转 — 左单旋
2.3.3 旋转 — 右单旋
2.3.4 旋转 — 左右双旋
2.3.5 旋转 — 右左双旋
【小结】
- 假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑:
- pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR;
- 当pSubR的平衡因子为1时,执行左单旋;
- 当pSubR的平衡因子为-1时,执行右左双旋。
- pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL;
- 当pSubL的平衡因子为-1是,执行右单旋;
- 当pSubL的平衡因子为1时,执行左右双旋。
- pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR;
- 旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。