背包问题(0-1背包 和完全背包)

(1)0-1背包问题

背包问题是动态规划中最经典的一道算法题。背包问题的种类比较多,我们先来看一个最简单的
背包问题-基础背包。他是这样描述的。
有N件物品和一个容量为V的包,第i件物品的重量是w[i],价值是v[i],求将哪些物品装入背包可使
这些物品的重量总和不能超过背包容量,且价值总和最大。我们先来举个例子分析一下。

举例子:
假设我们背包可容纳的重量是4kg,有3样东西可供我们选择,一个是高压锅有4kg,价值300元,
一个是风扇有3kg,价值200元,最后一个是一双运动鞋有1kg,价值150元。问要装哪些东西在重
量不能超过背包容量的情况下价值最大。如果只装高压锅价值才300元,如果装风扇和运动鞋价值
将达到350元,所以装风扇和运动鞋才是最优解,我们来画个图分析一下

 图中第一行网格中的值可以这样理解,表示将前i件物品放入限重为1kg 2kg 3kg 4kg的背包里时,可以获得的最大价值。

 

 

第二行网格中的数值表示:将前2种物品放入限重分别为1kg 2kg 3kg 4kg的背包能够达到的最大价值。可以发现,在计算第二行的数值时,会依赖第一行的数值。

 

 网格中第三行的数值,表示将前三种物品放入限重分别为1kg 2kg 3kg 4kg的背包中时,其可以达到的最大价值。

 

 

 

#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int maxPagValue = 4;
	int weight[3] = { 1,4,3 };
	int value[3] = { 150,300, 200 };
	int dp[4][5] = { 0 };
	for (int i = 1; i < 4; i++)
	{
		for (int j = 1; j < 5; j++)
		{
			if (j >= weight[i-1]) //注意weight 和value的索引应该是i -1 因为i从1开始 
			{
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i-1]] + value[i-1]);
			}
			else
			{
				dp[i][j] = dp[i - 1][j];
			}
		}
	}
	cout << dp[3][4] << endl;
	system("pause");
	return dp[3][4];
	
}

为了进一步进行空间优化,即采用滚动数组的方式,滚动数组是DP中的一种编程思想。简单的理解就是让数组滚动起来,每次都使用固定的几个存储空间,来达到压缩,节省存储空间的作用。起到优化空间,主要应用在递推或动态规划中(如01背包问题)。因为DP题目是一个自底向上的扩展过程,我们常常需要用到的是连续的解,前面的解往往可以舍去。所以用滚动数组优化是很有效的。利用滚动数组的话在N很大的情况下可以达到压缩存储的作用。
滚动数组举例:

斐波那契数列:


#include<stdio.h>
int main()
{
    int i;
    long long d[80];
    d[0]=1;
    d[1]=1;
    for(i=2;i<80;i++)
    {
        d[i]=d[i-1]+d[i-2];
    }
    printf("%lld\n",d[79]);
    return 0;
}

利用滚动数组:

上面这个循环d[i]只依赖于前两个数据d[i - 1]和d[i - 2]; 为了节约空间用滚动数组的做法。

#include<stdio.h>
int main()
{
    int i;
    long long d[3];
    d[1]=1;
    d[2]=1;
    for(i=2;i<80;i++)
    {
        d[0]=d[1];
        d[1]=d[2];
        d[2]=d[0]+d[1]; 
    }
    printf("%lld\n",d[2]);
    return 0;
}

在0-1背包问题中,将二维数组转化为一维数组。这里的二维数组我们每次计算的时候都是只需要上一行的数字,其他的我们都用不到,所以我们可以用一维空间的数组来记录上一行的值即可,但要记住一维的时候一定要逆序,否则会导致重复计算。

注意:要利用滚动数组,在上面装背包的例子中:

 

 

在计算第二行的值时,会依赖第一行的值,第三行的值会依赖第二行的前面的值。而且在求dp[i][j]的值会依赖dp[i - 1][j-weight[i-1]]的值。即第三行的第三个值 可能会依赖第二行的第二个值。

因此,在计算第三行的第三个值时, 第二行的第二个值的应该还得保留。即如果再用滚动数组的话,数组后面的值会依赖前面的值,因此,在对上述代码利用滚动数组进行空间优化时,对于j的遍历要采用逆序。

#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int maxPagValue = 4;
	int weight[3] = { 1,4,3 };
	int value[3] = { 150,300, 200 };
	int dp[5] = { 0 };
	for (int i = 1; i < 4; i++)
	{
		for (int j = 5; j >= 1; j--) //逆序遍历
		{
			if (j >= weight[i - 1])
			{
				dp[j] = max(dp[j], dp[j - weight[i - 1]] + value[i - 1]);
			}
		}
	}
	cout << dp[4] << endl;
	system("pause");
	return dp[4];
	
}

运行结果为350

(2)完全背包问题

与0-1背包问题相比,完全背包问题是 每件物品可以放无数次,然后求背包可以装的最大价值。

此时,状态转移方程与0-1背包问题的区别是

j >= weight[i-1] 时,  dp[i][j] = max( dp[i-1][j],  dp[i][j - weiht[i-1]] + value[i-1] )

否则   dp[i][j] =  dp[i-1][j]

#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int maxPagValue = 4;
	int weight[3] = { 1,4,3 };
	int value[3] = { 150,300, 200 };
	int dp[4][5] = { 0 };
	for (int i = 1; i < 4; i++)
	{
		for (int j = 1; j < 5; j++)
		{
			if (j >= weight[i - 1])
			{
				dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i - 1]] + value[i - 1]);
			}
			else
			{
				dp[i][j] = dp[i - 1][j];
			}
		}
	}
	cout<< dp[3][4]<<endl;
	system("pause");
	return dp[3][4];
	
}

运行结果为600

进行空间优化,采用一维数组,此时,网格中 第2行的值不会依赖第1行的值, 然而,第二行后面的值会依赖第二行前面的值。此时,对于j的遍历要顺序遍历。

#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int maxPagValue = 4;
	int weight[3] = { 1,4,3 };
	int value[3] = { 150,300, 200 };
	int dp[5] = { 0 };
	for (int i = 1; i < 4; i++)
	{
		for (int j = 1; j < 5; j++)
		{
			if (j >= weight[i - 1])
			{
				dp[j] = max(dp[j], dp[j - weight[i - 1]] + value[i - 1]);
			}
		}
	}
	cout<< dp[4]<<endl;
	system("pause");
	return dp[4];
	
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值