BiGRU-Transformer时间序列预测(多输入单预测)——基于Pytorch框架

1 介绍

本文将介绍一种基于Transformer和BiGRU(双向门控循环单元)的混合模型及其在时间序列预测中的应用。本模特适用于多输入单输出预测,适合风电预测,功率预测,负荷预测等等。

2 方法

首先,从Excel文件中导入数据,并去除了时间列。然后,将数据分为训练集和测试集,并进行了归一化处理。输入数据为前n-1列特征,输出为最后一列特征。接着,通过设置历史步长和未来预测步长,生成适用于训练和测试的数据集。

Transformer-BiGRU模型结合了Transformer和BiGRU的优势。Transformer用于捕捉全局特征,而BiGRU则更擅长于处理序列数据中的时间依赖性。模型结构如下:

  • 输入层:接收归一化后的时间序列数据。

  • Transformer编码器层:使用多层Transformer编码器捕捉全局特征。

  • BiGRU层:使用多层双向GRU进一步处理序列特征。

  • 线性层:输出预测结果。

3 结果

我们使用均方误差(MSE)作为损失函数,并采用Adam优化器进行模型训练。在训练过程中,每隔10个epoch打印一次损失,以监控模型的训练情况

### 关于CNN-BiGRU-Transformer预测模型的流程图与架构 #### CNN-BiGRU-Transformer预测模型概述 CNN-BiGRU-Transformer是一种混合深度学习架构,结合了卷积神经网络(CNN)、双向门控循环元(BiGRU)以及Transformer的优点。该架构能够有效处理维度时间序列数据,在特征提取、时序建模和全局依赖关系捕捉方面表现出色[^1]。 #### 架构组成详解 1. **CNN模块** 卷积层负责从输入数据中提取局部空间特征。通过滑动窗口机制,CNN可以高效捕获图像或信号中的边缘、纹理等低级特征[^3]。 2. **BiGRU模块** 双向门控循环元(BiGRU)用于对时间序列数据进行前向和反向建模。相比传统的RNN,GRU减少了计算开销并缓解了梯度消失问题。BiGRU则进一步增强了对上下文信息的理解能力。 3. **Transformer模块** Transformer主要承担全局依赖关系的学习任务。其自注意力机制允许模型关注不同位置的重要特征,从而实现更深层次的信息交互[^2]。 #### 流程图描述 以下是基于上述组件构建的CNN-BiGRU-Transformer预测模型的整体流程: ```plaintext 输入数据 -> CNN特征提取 -> BiGRU时序建模 -> Transformer全局依赖学习 -> 输出预测结果 ``` 具体步骤如下: - 输入原始数据经过预处理后送入CNN部分; - 提取的空间特征被传递至BiGRU以建立时间上的关联性; - 最终由Transformer完成高层次语义表示,并生成最终输出[^4]。 #### 架构图示例 下面提供了一个简化版的Markdown代码块来展示此架构图布局方式: ```mermaid graph TD; A[输入数据] --> B[CNN特征提取]; B --> C[BiGRU时序建模]; C --> D[Transformer全局依赖学习]; D --> E[输出预测结果]; ``` > 注:为了实际绘制图形,建议使用Mermaid.js或其他支持矢量图形编辑工具如PowerPoint、Lucidchart等按照以上逻辑创建可视化图表。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值