BiGRU-Transformer时间序列预测(多输入单预测)——基于Pytorch框架

1 介绍

本文将介绍一种基于Transformer和BiGRU(双向门控循环单元)的混合模型及其在时间序列预测中的应用。本模特适用于多输入单输出预测,适合风电预测,功率预测,负荷预测等等。

2 方法

首先,从Excel文件中导入数据,并去除了时间列。然后,将数据分为训练集和测试集,并进行了归一化处理。输入数据为前n-1列特征,输出为最后一列特征。接着,通过设置历史步长和未来预测步长,生成适用于训练和测试的数据集。

Transformer-BiGRU模型结合了Transformer和BiGRU的优势。Transformer用于捕捉全局特征,而BiGRU则更擅长于处理序列数据中的时间依赖性。模型结构如下:

  • 输入层:接收归一化后的时间序列数据。

  • Transformer编码器层:使用多层Transformer编码器捕捉全局特征。

  • BiGRU层:使用多层双向GRU进一步处理序列特征。

  • 线性层:输出预测结果。

3 结果

我们使用均方误差(MSE)作为损失函数,并采用Adam优化器进行模型训练。在训练过程中,每隔10个epoch打印一次损失,以监控模型的训练情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值