TCN-Transformer时间序列预测(多输入单预测)——基于Pytorch框架

1 数据集介绍

我们使用的数据集包含以下几个重要的属性:

  • date(日期)

  • open(开盘价)

  • high(最高价)

  • low(最低价)

  • close(收盘价)

  • pre_close(前收盘价)

  • change(变动)

  • pct_chg(涨跌幅)

  • volume(成交量)

  • amount(金额)

我们的目标是预测 amount(金额),这对于股票交易和投资决策至关重要。

2 处理方法

(1)简介

原始论文:https://arxiv.org/pdf/1803.01271

原始代码:https://github.com/LOCUSLAB/tcn

    TCN的基本过程是膨胀因果卷积。卷积结束后,由于padding 的原因,卷积之后的新数据尺寸BB会大于输入数据的尺寸

PyTorch是一个开源的深度学习框架,可以用来构建神经网络模型。TCN(Temporal Convolutional Network)是一种用于时间序列预测的神经网络结构,能够捕捉时间序列中的长期依赖关系。Transformer是另一种常用的神经网络结构,通常用于自然语言处理领域,但也适用于时间序列预测任务。 要使用PyTorch实现TCN-Transformer时间序列预测,首先需要导入PyTorch库。然后可以定义一个包含TCNTransformer层的神经网络模型。TCN可以用来提取时间序列中的特征,而Transformer可以捕捉序列数据之间的关系。 在构建神经网络模型之后,接下来需要准备时间序列数据集。可以使用PyTorch的Dataset和DataLoader类来加载和处理时间序列数据。通常需要将数据划分为训练集和测试集,以便在训练模型时进行验证和评估。 训练神经网络模型时,可以使用PyTorch的优化器和损失函数来最小化预测值与真实值之间的误差。可以选择适当的学习率和训练迭代次数,以确保模型收敛并取得良好的预测效果。 最后,可以使用训练好的TCN-Transformer模型进行时间序列预测。将待预测时间序列输入到模型中,即可获得对未来趋势的预测结果。通过评估预测结果与实际观测值的差异,可以评估模型的性能和准确度。 总之,使用PyTorch实现TCN-Transformer时间序列预测需要构建神经网络模型、处理数据集、训练模型并进行预测,通过这些步骤可以实现对时间序列数据的准确预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值