Matlab数字信号处理——C-PML一维弹性波方程的数值模拟与边界处理

1 简单介绍

在地震波传播的数值模拟中,精确处理边界条件一直是关键挑战之一。传统的有限差分和有限元方法常因波动在边界处的反射导致模拟精度下降。本文实现非分裂卷积完全匹配层(Convolutional Perfectly Matched Layer, C-PML)技术,并展示其在一维各向同性弹性波方程中的应用与优势。

(1)C-PML 的背景与原理

C-PML 是对经典 PML(Perfectly Matched Layer)的改进,由 Roden 和 Gedney 于 2000 年提出。PML 技术最初由 Bérenger (1995) 用于解决电磁波模拟中的边界问题,但其在处理弹性波,尤其是入射角较大波动时,表现欠佳。C-PML 通过引入卷积项,并借助记忆变量和递归关系高效计算该项,进一步增强了边界吸收能力。

(2)一维弹性波方程的离散与求解

本文实现了一维各向同性弹性波方程的数值模拟,采用交错网格有限差分法。这是一种高效且稳定的离散技术,被广泛用于地震波模拟(例如 Madariaga 1976 和 Levander 1988 的经典研究)。

①位移方程:描述质点在弹性介质中的运动。

②应力-应变关系:通过剪切模量μ 和介质密度ρ 连接速度场与应力场。

③为确保数值计算稳定,时间步长Δt 和空间步长Δx 须满足 CFL 条件:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值