矩阵乘法(蓝桥杯)

/*
这个题目博主还是思考和调试了不少时间,因为一直想让自己的算法尽量少花时间(注意!!!矩阵元素非负时,矩阵的0次幂是单位矩阵!!!)。下面扔出C++代码,和右边界运行结果和时间(博主注意到,在N=30,M=5,且矩阵元素均为10时,long long也是不够用的,所以所给的截图是把M改成了4的结果)。
PS:虽然右边界会越界,但提交上去依旧AC了,因为测试数据并没有给那么大,如果某dalao有好的建议,望不吝赐教!
*/
/*问题描述
  给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
  例如:
  A =
  1 2
  3 4
  A的2次幂
  7 10
  15 22
输入格式
  第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
  接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
  输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
*/

#include <iostream>
#include <algorithm>
#include <ctime> 
using namespace std;
clock_t start,end;
int main()
{
	long long int A[30][30],S[30][30],T[30][30],N,M;//S放最终结果。A放初始矩阵。T放中间计算过程矩阵 
	cin>>N>>M;
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++){
			cin>>A[i][j];
			S[i][j]=A[i][j];
			T[i][j]=A[i][j];
		}
	start=clock();//计时 
	do{
		if(M==0){
			for(int i=0;i<N;i++)
				for(int j=0;j<N;j++){
					S[i][j]=0;
					if(i==j) S[i][j]=1;
				} //当要求矩阵的0次幂,结果为单位阵	
			break;
		}	
		if(M==1) break;
		else{
			for(int i=0;i<N;i++){
				for(int j=0;j<N;j++){
					int temp=0;
					for(int k=0;k<N;k++){
						temp+=(T[i][k]*A[k][j]);
					}
					S[i][j]=temp;
				}
			}
			for(int i=0;i<N;i++)
				for(int j=0;j<N;j++)
					T[i][j]=S[i][j];
			M--;
		}
	}while(M>1);
	end=clock();//在打印之前结束计时 
	for(int i=0;i<N;i++){
		for(int j=0;j<N;j++){
			cout<<S[i][j]<<" ";
		}
		cout<<endl;
	}
	cout<<end-start<<" ms"<<endl;
	return 0;
}

Lin

展开阅读全文

没有更多推荐了,返回首页