题意:给你一个长度为W的模式串(1 ≤ |W| ≤ 10,000)和一个长度为T的文本串(|W| ≤ |T| ≤ 1,000,000),问你这个模式串在文本串中出现了几次,注意样例里面的这一组样例AZA AZAZAZA 输出的是3而不是2,重复的也算一次。
分析:显然根据HDU一贯的作风(套路),这题我们肯定不能用朴素的暴力匹配,那样的话,复杂度是O(M*N),肯定会超时,其实这题就是kmp裸题(模板题),如果不懂KMP是什么的,可以参考这里,我们先预处理模式串的Next数组,复杂度是O(M),然后根据这个Next数组让模式串和文本串匹配一遍,扫一遍的复杂度是O(N),所以总的复杂度为O(M+N)。这里需要注意一点的是:当每次j等于了模式串的长度的时候不是让j回溯到0,因为题目允许带重复的匹配(相当于要根据Next数组看前面已匹配了的情况)而预处理的时候其实已经存下了模式串的前后缀匹配情况,所以应该让j回溯到Next[j]。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
char p[maxn],t[maxn];
int Next[maxn];
int lenp,lent;
/**预处理模式串的Next数组*/
void getNext()
{
int j = -1,i = 0;
Next[0]=-1;
while(i<lenp)
{
if(j==-1||p[i]==p[j])
{
i++;
j++;
Next[i]=j;
}
else j=Next[j];
}
}
int kmp()
{
int i = 0,j = 0,sum = 0;
while(i<lent)
{
if(j==-1||t[i]==p[j])
{
i++;
j++;
}
else j=Next[j];
if(j==lenp)
{
sum++;
j=Next[j];/**注意j应该这样回溯*/
}
}
return sum;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%s%s",p,t);
lenp=strlen(p),lent=strlen(t);
getNext();
printf("%d\n",kmp());
}
return 0;
}