AI绘画重大更新通知:MJ图生图控制人物一致性功能上线!半年来重大更新!(含教程)

预告了好久的MJ角色一致性功能终于来了,经过初步测试,效果已经足够令人满意了,已经达到生产环节可用,为AI内容生成带来了极大的提升。

在Midjourney的AI创作中,实现人物形象的一致性始终是一个挑战。在最新推出的一致性功能中,创作者们终于解决了一个大难题,现在仅需一张图,便能固定IP形象。这一进步,不仅极大地简化了创作流程,也使得个人创作者能够轻松驾驭复杂的数字IP创作。

一、人物一致指令如何使用?

  • 第一步:打开MJ-V6绘图界面,上传参考图

  • 第二步:开启角色一致性按钮,并调整风格一致性的参数值

**角色一致性:**可保持人物角色一致

**风格一致性:**可调整cw值强度从100修改为0;强度100 范围涉及脸部、头发和衣服会保持一致,强度 0 时,它只会集中在脸部(适合更换服装/头发等)

  • 第三步:输入指令,描述你想生成的图片指令,点击开始创作即可

从IP行业来看,一致性问题解决,降低了高质量IP创作的门槛,使得更多的创作者能够参与到IP的创造和维护中来。其次,它为IP的长期发展提供了技术支持,有助于IP形象的稳定和品牌价值的积累。

二、人物一致案例展示

接下来,我将先从以下真实风格人物IP、卡通人物IP、非人形象IP这三个维度来进行一致性测试。

1.真实风格人物IP

目标:实现用女生A的脸,换上B的衣服和场景。我选了两个女生,然后用A女生的脸,换上B女生的衣服和场景

提示词:一名年轻女子身着卡其色西装、白色内搭、系着腰带,摆姿势拍了一张全身照。她搭配深蓝色水洗牛仔直筒短裤,打造出时尚休闲的造型。这张照片由索尼公司拍摄,在明亮的灯光和白色背景下拍摄,展示了这位女士无可挑剔的时尚感和放松的姿势 --ar 3:4 --stylize 250

原图:

▲女生A

▲女生B

–cw 100

–cw 0

这种场景可以适用于电商场景,模特可以快速切换不同衣服、不同场景,后续还可以在美妆、生活、时尚领域都可以用这个IP进行衍生创作,进行不同生活化场景的尝试。

2.卡通人物IP一致性

目标:把卡通人物A替换上卡通人物B的场景

提示词:一个穿着黑色裤子和橙色卫衣的可爱男孩被放置在灰色房间的白色基座上,上面印有“R”的标志,覆盖在柔和的灯光下,艺术品背后的墙壁是蓝灰色,美学风格,产品摄影,极简主义 --ar 3:4 --niji 6

原图:

▲卡通人物A

▲卡通人物B

–cw 100

–cw 0

卡通人物的效果也是很绝,虽然面部有轻微变化,但是感官上不是很明显。

这下儿童绘本、有声小说的生产力一下就上来了,后续儿童读物、儿童时尚领域都可以用这个IP,进行生活化场景的尝试。

3.非人形象IP一致性

目标:实现非人类生物的IP的一致性

除了人物形象以外,这次Midjourney对于非人形象IP一致性表现也非常出色。我用了小狐狸。

提示词:一个可爱的毛毡白色的狐狸,穿着银色美丽的骑士盔甲,由材料和织物,珠子,纽扣,羊毛,针毡,手里拿着一朵花

原图:

–cw 100

–cw 0

瞬间就拥有了我自己的宠物IP。随着IP一致性的稳定,场景和衣服生成也更加灵活。虚拟宠物IP可以不断衍生场景,赋予了他们生活化气息,从而创造出一个IP宇宙。

4.“妙鸭”同款证件照

Midjourney这次的人物一致功能,可以完全复刻实现“妙鸭”证件照,而且还不需要十几张自拍,只需要一张图就能搞定。

原图:

MJ-V6:

生成的证件照,第一眼看了感觉像,仔细看好像也不太像,但是总体是不离谱的,很高效方便。感觉以后拿来给自己的证件照换个背景颜色,换套衣服还是很方便的。

5.再来试试艺术照

原图:

(1)复古旗袍

(2)T台,模特走秀

MJ人物一致性的这一功能上线,不仅极大地提高了AI内容创作的效率,创作者也可以迅速拥有大量基于同一IP形象创作的作品,相当于一下子签约了无数个IP,并且对这些IP持续二创,这也使得一个人也能成为一个MCN。

创作者可以更加专注于创意和故事的构思,而不是消耗大量时间在随机抽卡生成上。极大地提升了创作的效率,更保证了作品的连贯性和一致性,使得每一个细节都能够精准地传达创作者的意图。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### 关于保持成中人物一致性 在神经风格迁移领域,研究者们已经探索了多种方法来提高不同场景下的人物一致性。为了确保在更换背景或服装时仍能维持主体特征的一致性,可以采用以下几种策略: #### 多模态学习框架 通过构建一个多模态的学习框架,该模型能够同时处理来自多个源的信息流,从而更好地捕捉并保留目标对象的关键属性[^1]。 ```python class MultiModalModel(nn.Module): def __init__(self, ...): super(MultiModalModel, self).__init__() # 定义多模态融合层和其他组件 def forward(self, image_features, text_features=None): combined_representation = torch.cat((image_features, text_features), dim=-1) output = self.fusion_layer(combined_representation) return output ``` #### 对抗训练机制 引入对抗网络结构有助于增强系统的鲁棒性和泛化能力,在不改变原始身份的前提下实现高质量的外观转换效果。具体来说,可以通过设计特定类型的损失函数来约束成器的行为模式,使其专注于修改非本质特性而非核心识别要素。 #### 属性控制模块 开发专门用于调节某些视觉特性的子网路单元——比如颜色、纹理或者形状等细节方面——使得用户可以在一定程度上自定义想要施加的变化程度而不影响到其他部分的表现形式。 #### 数据集扩充技巧 利用大规模预训练模型以及数据扩增手段增加样本多样性,进而提升算法对于各种复杂情况下的适应力。这不仅限于简单的翻转旋转操作,还包括更高级别的语义层面调整,如光照条件模拟或是姿态估计校正等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值