AI绘画之Stable Diffusion——安装使用

一、SD简介

简单来说Stable Diffusion就是一个开源的可以生成图像的AI系统。当然不止是图片,还有视频。

相比较之前的介绍的MJ,SD更可控。之前的文章月光介绍过,MJ最大的魅力在于本身的不确定性,所以可以生成一些比较奇幻令人眼前一亮的图片。

可不确定也意味着不可控,有些特别的要求,MJ很难去实现,这个时候SD就是一个最好的选择,至于其他绘画方面的软件,连跟这两个碰瓷的机会都没有。

下面以表格的形式,对MJ和SD做个比较。

二、本地部署

这里月光不介绍本地部署的方式,如果你想要本地部署的详细步骤可以自行搜索。

**原因1:**SD的本地部署对电脑要求比较高,可以流畅跑起来SD的电脑起码接近5位数的价格,这个价格对于大部分想要尝试SD的朋友,直接就劝退了。虽然出图不需要花钱,但是一个电脑5位数的尝试成本太高了。尤其对于想尝尝鲜的朋友。

tips:如果你想搞个挺大的固态,把SD的所用东西包括模型啊,lora,controlNet等等东西都放进去,然后在固态里面运行,不放到自己的电脑里面。这里不多说什么,你可以自己去尝试下。

**原因2:**不可以本地部署一样可以使用SD,可以使用云部署。且使用更加方便,虽然也有一些成本,但对于一开始想要尝试一下的朋友,是个比较好的选择。

如果你自己本身有一台很不错的电脑,想要尝试下能不能本地部署SD。想要了解大概什么样的配置能够基本流畅的带起来SD。

这我帮你总结在下面了。

**电脑配置:**一般来说要想流畅运行 SD,电脑至少也要有 RTX3060 级别的显卡,如果想要畅玩,就要 16G 显存起步,推荐使用 RTX 4060Ti(16G显存版)。

**部署安装包(秋叶大神):**基本上现在大家玩SD的都是用的秋叶的包。

链接:https://pan.baidu.com/s/14UJ0VVDTlkNm2OuAOq6bAA?pwd=6666

这里其实还有第三种方式,就是官网直接把开源项目代码给拉下来,这也是最原始的方式,没有任何整合内容,且要配合安装git和Python环境。

如果你真的想在AI绘画或者设计领域使用AI深耕,那我还是建议你要自己搞一台电脑自己跑。如果暂时没必要,可以看下面介绍的云部署的方式。

三、云部署

顾名思义这种方式就是在云端部署SD,相当于租用别人的足够运行起来SD的机器来跑图。

既然是租用别人的机器,自然是要收费的。

现在大概有下面4个常见的云平台:揽睿星舟、AutoDL、OnethingAI 和端脑云。

下面是4个平台的比较。

综合上面的表格来看,再加上上手操作方便的考量月光选择了OnethingAI。

链接:https://onethingai.com/

1. 注册账号,进入主页,点击下方红框的地方「AI实验室」,开始准备创建应用

2. 进入页面之后下方红框的内容,你应该是什么也没有的。点击蓝色框的「创建应用」按钮

3. 按照图示以此点击

4. 建议选择4090或者3090,3080和3060也能用,但是出图速度会很慢,比较影响体验。新注册账号会有20代金券的免费额度使用,所以不妨试一下性能更好的性能差一点的做个比较。

只要B区或C区有机子可以选,建议选B区或者C区,因为支持克隆。

**克隆:**在我们创建好一个应用并上传了一部分模型之后,可以使用克隆应用的功能直接创建一个新的应用,此应用会完全包含我们第一个应用的模型、插件等内容,省去了重新上传的时间和麻烦。

5. 然后点击右下角的立即创建。创建之后看到的就是下面的页面了。

创建完成之后,首先会显示“部署中”,稍等片刻就会变成“运行中”,此时我们的云端就成功跑起来了。

6. 点击右边的SDWebUI,即可打开SD的操作页面。

7. 下面就是上传需要的模型和lora了。Onething可以关联百度网盘,可以直接从网盘上传。

上传模型还是lora,勾选对应的文件夹,然后点击立即下载

模型一般都比较大,建议开个百度网盘会员去下。

8. 上传模型完毕之后,就可以进入刚才的UI页面,点击模型旁边的按钮刷新下就好了。

如果要查看已下载的模型和lora。请看下图


AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### 安装和配置Stable Diffusion模型 #### 前提条件 为了成功安装并运行Stable Diffusion WebUI,在Linux服务器上的准备工作分为硬件条件与软件条件两部分。 - **硬件条件** 需要一台具有足够性能支持深度学习计算的机器,通常建议至少配备8GB显存以上的GPU设备来加速图像生成过程[^1]。 - **软件条件** 确认已安装最新版本的操作系统,并更新所有现有包至最新状态。对于特定发行版如openSUSE,则需执行`sudo dnf install wget git python3 gperftools-libs libglvnd-glx`以满足基本需求[^4]。 #### 安装步骤 ##### 创建Python虚拟环境 建立独立的Python环境有助于隔离项目所需的库与其他全局安装之间可能产生的冲突: ```bash python3 -m venv sd-webui-env source sd-webui-env/bin/activate ``` ##### 安装必要的软件和库 激活虚拟环境后,继续安装其他必需组件以及Python库: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install -r requirements.txt ``` 上述命令假设已经位于WebUI项目的根目录内;如果尚未下载该项目,请参阅后续说明获取更多信息。 ##### 克隆Stable Diffusion WebUI仓库 通过Git工具从官方GitHub页面拉取最新的源码副本到本地计算机上: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui/ ``` 这一步骤会自动创建一个名为`stable-diffusion-webui`的新文件夹用于存放整个应用程序及其资源文件。 ##### 安装依赖 完成克隆之后,按照README文档中的指导进一步设置环境变量、调整参数配置等操作,确保一切准备就绪以便顺利启动服务端口监听程序。 ##### 运行 一旦前期工作全部结束,即可尝试首次加载界面: ```bash ./webui.sh ``` 此脚本将会依次调用内部定义的一系列初始化函数直至最终呈现图形化用户交互面板给访客浏览使用。 ##### 访问WEB UI 打开浏览器窗口输入http://localhost:7860地址栏中指定路径即可见证成果——一个功能完备的人工智能绘画平台正等待着用户的探索发现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值