第一部分:生图
模型
- 决定画面风格
VAE
-
增加图片饱和度降低灰度
-
kl-f8-anime2.ckpt颜色饱和度比较高
-
SDXL的大模型有自己专门的VAE,使用时需要将其切换到sdxl_vae.safetensors
-
Animevae.pt和orangemix.vae.pt多用于二次元
Clip终止层数
- 数值越高,生成的图片和描述的内容(tag)关系越低
提示词
-
正向提示词:图像质量、主题、光线结构等
-
反向提示词:可以通过嵌入式嵌入
采样方法
对图像元素的提取方式,常用采样方法有:
-
DPM++ 2M Karras 生成速度比较快,图像质量比较高,相对来说可控性稍微差一些
-
DPM++ SDE Karras 运算速度稍慢,但生成质量高,画面生成的稳定性比较好
-
DPM++ 2M SDE Karras 适用于大多数模型,生成步数在20-30之间比较合适
-
Euler a 生成速度比较快,更多注重图像的主视觉的生成,可控性相对弱一些,多适用于二次元图像的生成
迭代步数
-
用于设置AI在图像生成过程当中运算的细腻度
-
迭代步数的多少主要是由模型和采样方法决定
-
一般情况下,大部分模型的迭代步数在15-30之间
图像尺寸
- 尺寸比例控制插件控制画面宽高
总批次数/单批数量
- 点击一次生成按钮,进行4次图像生成,总批次数比单批数量生成的图像在运算上更细致。
**提示词引导系数
**
- 值越高,画面在生成时受提示词的影响越大,建议7-10之间,最常用7或7.5
随机数种子
- 默认-1,绿色按钮提取当前图片种子
ADetailer
- 在进行人像生成过程中,开启
生成快捷键
- Ctrl+enter
第二部分:放大
高分辨率修复:在第一次图像生成的基础上,二次生成,高清放大
-
放大算法:4X-Ultrasharp 更真实、细腻度更好
-
高分迭代步数:0-20之间,选择10
-
重绘幅度:图像二次生成的过程中,对原始图像修改的程度,建议0.35以下,选择0.3
-
放大倍数:一般默认2,1.5可使生成速度快
单独放大:【方法1】总批次数1,随机数种子提取当前图像的种子;【方法2】取消勾选高分辨率修复,选择需要放大的图片,点击下方星星。
文章使用的AI工具SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。
写在最后
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
