打开Stable Diffusion 无限可能的新钥匙——ComfyUI

今天给大家介绍Stable Diffusion的另外一种打开方式 ComfyUI,

ComfyUI是基于节点流程是的AI绘图软件你可以把他认为它集成了Stable Diffusion的所有功能,每个功能就是一个节点,然后我们通过组装节点就可以灵活控制出图。

通过描述还是比较抽象,我们来看一下眼ComfyUI吧,看看节点流程是什么样子的。

可以看到AI绘画的每个步骤都被拆成了一个节点,比如加载模型(Load Checkpoint)、采样器(KSampler)、提示词(Prompt)等都是以节点的形式存在。

大家用习惯WebUI之后,看到ComfyUI的节点可能有两种感觉–陌生,头大。现在我就带大家感受一下。

#01

/安装

原生网址:https://github.com/comfyanonymous/ComfyUI

B站UP主ZHO大佬的汉化包:https://github.com/ZHO-ZHO-ZHO/ComfyUI-ZHO-Chinese

今天是直接用到的ZHO的汉化包,有精简版和标准版,我用的是标准版,此安装包文末领取。

注意:为了控制压缩包的大小,整合包内没有放置SD模型,

需要自己把模型到models\checkpoints里,或选择与WebUI模型路径共享),如果已经部署SD了,可以通过路径共享,方法是:

1、在ComfyUl文件夹中找到extra model paths.yamlexample文件右键用记事本打开文件;

2、把里面“path/to/stable-diffusion-webui/”换成你放置WebU模型的文件夹路径(路径中不要出现中文),切记,要改为SD的根目录

3、点击文件-保存;

4、关闭文件,右键重命名文件,把名称中的.example去掉,变为extra model paths.yaml。重启之后,主模型加载器就会自动加载到模型。

安装好了之后,可以启动了,这里有两种启动方式:

1、CPU启动;

2、GPU英伟达显卡启动,显卡好的话就用这个。

另外,后期Comfy更新升级可以用,主目录下的update文件夹里面的升级脚本升级。

**安装包获取方式关注公众号发送:**ComfyUI

#02

/使用

启动后,界面是空白的,模块没有在界面上显示,需要自定义添加。

简单运行

这时候有两种方法可以执行,推荐第二种。

1、鼠标右键,自主添加生成图片需要的模块;

2.可以直接用ZHO汉化的模块组:

界面上就会弹出对应的窗口,刚刚加的是主模型加载器。

也可以鼠标双击界面,弹出搜索窗口,直接搜索常用版块:

Alek节点

右键 — 新建节点 — Alek节点,可以看到四个功能:

依次点击会出现以下功能:

清除这些功能后,我们来实操一下:

  • **步骤1、**点击“加载默认”,调出默认工作流;

  • **步骤2、**调出CLIP文本编码器

**步骤3、**右键点击系统自带的 CLIP文本编码器,选择“转换 文本 为输入

**步骤4、**链接翻译文本编码器和系统文本编码器

**步骤5、**右键“新建节点”—“Alek节点”—“拓展”—“预览文本”

**步骤6、**链接翻译编码器和预览文本

这一步是对“CLIP文本编码器(翻译)”栏进行预览,主要是避免插件翻译不准确。


所有的AI绘画工具,模型和插件资源·,AI学习资料及教程都已经整理好了,文末扫码即可免费获取噢~

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
关于ComfyUI相关的Stable Diffusion项目资源或教程的信息,在提及Physics-Based Human Motion Modelling for People Tracking的内容中并未直接涉及[^1]。然而,针对ComfyUIStable Diffusion结合使用的场景,可以提供一些通用指导。 ### ComfyUI简介 ComfyUI是一个用于创建图形界面应用程序的框架,允许开发者通过拖拽组件来构建用户界面。对于希望简化模型部署流程并使AI工具更易于访问的研究人员和开发人员来说,这是一个非常有价值的平台。 ### Stable Diffusion概述 Stable Diffusion是一种基于深度学习的技术,旨在生成高质量图像的同时保持计算效率。该技术利用预训练神经网络将随机噪声转换成逼真的图片,广泛应用于艺术创作、设计等领域。 ### 结合两者的方法 为了实现ComfyUIStable Diffusion的有效集成: - **安装环境配置**:确保已正确设置Python虚拟环境,并按照官方文档完成必要的依赖项安装。 - **API接口调用**:研究如何通过RESTful API或其他形式的数据交换机制连接到远程运行的Stable Diffusion服务端实例。 - **自定义节点开发**:探索编写特定于Stable Diffusion操作的控件的可能性,比如参数调整滑块、样式迁移选项卡等。 ```python import requests def generate_image(prompt, api_key): url = "http://localhost:7860/sdapi/v1/txt2img" payload = { "prompt": prompt, "steps": 50, "cfg_scale": 7.5, "width": 512, "height": 512, "seed": -1 } headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(url, json=payload, headers=headers) return response.json() ``` 此代码片段展示了如何向本地托管的服务发送请求以根据给定提示词生成图像的一个简单例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值