泛函分析-1


前言


一、basic concepts

聚点:在度量空间中(X,d),M\subset X,x_{0}\in Xps:聚点x_{0}可以不属于M

           若x_{0}任意一个领域\varepsilon 至少含有一个异于x_{0}的 点y,且y\in M,则称x_{0}为的M一个聚点

           \\ \Leftrightarrow \forall \varepsilon >0,\exists y,y\in B(x_{0},\varepsilon) \ and\ y\in M \\\Leftrightarrow \forall \varepsilon >0,(B(x_{0},\varepsilon)\cap M)\setminus (x_{0})\neq \varnothing

                                                  (“\(x_{0})”指的是除去点x_{0})

导集M的聚点的全体构成的集合称为M的导集,记作{M}'

        eg:有理数集的导集是理数集和无理数集的交集

闭包记 集合\bar{M}=M\cup {M}'为 集合M的闭包\bar{M}        ps:聚点不一定属于M

命题1(X,d),\forall M\subset X,其闭包\bar{M}是闭集

命题2:\small (X,d),M\subset X,M是闭集\small \Leftrightarrow \bar{M}=M    \small \Rightarrow提供了第二种判断“M的闭集”的方法

有限集:

无限集:元素无限个

可列集:若集合的元素可与自然数集\small \mathbb{N}中的元素一一对应,则集合称为可列集

               ps: 可各自按大小关系排序后对应,也可采取其他对应法则

定理1:设\small A_{n},n=1,2,\cdots都是可列集,则\small A=\bigcup_{n=1}^{\infty }A_{n}也是可列集。即可列个(可以时有限个也可以是无限个!)可列集的并是可列集。

        eg:有理数集是可列集,无理数集在(0,1)区间上是不可列集

可数集包含有限集和可列集

        ps:自然数集、偶数集都是可列集,但注意:偶数集与自然数集按大小关系一一对应,说明偶数集的元素与自然数集的元素应该相等,但偶数集很明显是自然数集的真子集,此处体现当考虑无穷时,对事物的刻画尺度可能不唯一?

稠密\small (X,d),M\subset X, 若 集合M的闭包\small \bar{M}=X,则称集合M在X中稠密。

        ps:由命题1闭包定是闭集,\small \bar{M}=X也是闭集,所以M稠密只会出现在空间X是闭集的情况下

可分:X中有一个M,M稠密且为可数集,则称X是可分的。ps:可分的分成什么东西吗?

        eg(1)\small (\mathbb{R},d_{p})是可分度量空间

                (2) \small (l^{p},d_{p})=\left\{\begin{matrix} 1\leqslant p<\infty &kefen \\ p=\infty & bu \ kefen \end{matrix}\right.,\ \ \ \\ l^{p}=\{x=(x_{1},x_{2},\cdots),x_{i}\in\mathbb{R},\sum_{i=1}^{\infty}|{x_{i}}|^{p}<\infty ),

                (3)\small (C[a,b],d_{c})是可分的,其中\small d_{c}=max_{a\leqslant t\leqslant b}|f(t)-g(t)|

映射在某点处连续:两个度量空间(X,\small d_{x}),(Y,\small d_{y}),定义映射\small T:X\rightarrow Y\: \\x\rightarrow T(x)取一点x_{0}\in X存在\delta >0使任意x\in X满足d(x,x_{0})<\delta时,对任意\varepsilon >0都有d(T(x),T(x_{0}))<\varepsilon,则称T在x_{0}连续。ps:谁是“存在”与谁是“任意”区分开

        \Leftrightarrow\\\forall \varepsilon >0,\exists \delta >0,\ \ s.t. \ \ TB(x_{0},\delta)\subset B(T(x_{0}),\varepsilon )

连续映射:方(1)点点都连续:若T在X中任一点(\forall x_{0}\in X)都连续,则称T是连续映射
                  方(2)任意开集U\subset Y,有T^{-1}U= \left \{ x\in X,Tx\in U \right \}是X中的开集
                ps:但“对任意开集V\subset X,有TV= \left \{ y\in Y,y=Tx,x\in V \right \}是Y中的开集”与“T是连续映射”互推不出来
(序列的)收敛性:若存在一个{\color{Green} x\in X},使\small \lim_{n\rightarrow \infty }(x_{n},x)=0,则x叫做\small \left \{ x_{n} \right \}的极限,记为\small \lim_{n\rightarrow \infty }x_{n}=x\small x_{n}\rightarrow x,称\small \left \{ x_{n} \right \}是收敛的
                        ps:此处收敛要求{\color{Green} x\in X},不同于具体函数中的收敛定义,那时收敛之可不位于定义域内。
有界集\small (X,d),M\subset X,直径\small d(M)=sup_{x\in M,y\in M}d(x,y),若\small d(M)<\infty,即\small d(M)是有限值,则称M为有界集
             \small \Leftrightarrow \forall x_{0}\in X,\exists r=r(x_{0})>0,使\small M\subset B(x_{0},r)(即存在一个开球把M包起来)
定理:(X,d),X中收敛序列是有界集,且极限唯一
定理:若\small x_{n}\rightarrow x,y_{n}\rightarrow y,\small d(x_{n},y_{n})\rightarrow d(x,y)
           即求极限与求度量可换序

 

 

 

 


总结

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值