文章目录
1.在计算机内生成三维信息
1.使用几何建模软件,通过人机交互生成人为控制下的三维:3DMAX、Maya、AutoCAD、UG
2.获取真实的物体形状:三维重构
三维图像重构:
摄像机获取图像,对图像分析处理,结合CV知识推导出现实中物体的三维信息
从二维图像到三维空间的重构(模仿生物两只眼睛观察物体产生的深度)
对二维图像中像素点的三维信息的恢复,尤其是深度信息
一般采用两个摄像机,对同一个物体进行采集。
单视图:信息不完全,需要利用经验知识
多视图:类似人的双目定位,相对比较容易
理想:对每个像素点的深度进行恢复
三维矢量图形 代替 三维位图
位图:记录一个个的点位,以像素为单位,放大后图像变得模糊不清
矢量图:不受分辨率影响,适合三维建模,线条顺滑,不逼真,无法产生多彩多变的图像
过程:
图像获取:获取二维,影响因素:光照,相机几何特性
摄像机标定:建立有效的成像模型,求解摄像机的内外参数,结合图像得到在空间中的三维点坐标
特征提取:特征点、特征线、区域。
大多以点为匹配基元,怎么提取与怎么匹配 紧密联系,提取时确认匹配方法
提取算法:
基于方向导数的方法
基于图像亮度对比关系的方法
基于数学形态学的方法
立体匹配:根据提取的特征,建立各个图像之间的对应关系,将同一个物理空间点,在不同的图像中的成像点,一一对应起来。影响因素:光照,噪声,物体特性,摄像机特性
三维重建:利用 匹配结果+摄像机标定的内外参数 进行重建
重构方法:
空间点的重建:最基本
空间直线、空间二次曲线的重建
极线约束法
全像素的三维重建:最理想,测量条件严格,仅限于某一具体对象
空间点的三维重建举例:
四个坐标系
1.像素坐标系:图像的每个像素点,存储在数组中,在图像左上角定义原点,建立图像坐标系uv,坐标分别对应数组中的存储位置
2.图像坐标系(ICS):用来表示像素在图像中的物理位置所建立的坐标系,原点一般在中心。上图xy。
3.摄像机坐标系(CCS):如图,XY轴与成像平面坐标系的xy平行,Z轴与光轴平行,垂直于图像,交点为图像的主点,也就是成像平面坐标系的原点。OO‘为焦距。
4.世界坐标系(WCS):在环境中选择一个参考坐标系,描述的是摄像机和物体的位置。与摄像机坐标系的关系用旋转矩阵R和平移向量t来描述。对应关系如下:
坐标系转换
记一个点在
世界坐标系(WCS,World Coordinate System)中的坐标为 X w = [ x w , y w , z w ] T X_w=[x_w,y_w,z_w]^T Xw=[xw,yw,zw]T,
相机坐标系(CCS,Camera Coordinate System)的坐标为