PaddlePaddle学习笔记——优化器

神经网络最终是一个 最优化问题 , 在经过 前向计算和反向传播 后, Optimizer 使用反向传播梯度,优化神经网络中的参数。
1.SGD/SGDOptimizer
SGD 是实现 随机梯度下降 的一个 Optimizer 子类,是 梯度下降 大类中的一种方法。 当需要训练大量样本的时候,往往选择 SGD 来使损失函数更快的收敛。

2.Momentum/MomentumOptimizer
Momentum 优化器在 SGD 基础上引入动量,减少了随机梯度下降过程中存在的噪声问题。 用户在使用时可以将 ues_nesterov 参数设置为False或True,分别对应传统 Momentum(论文4.1节) 算法和 Nesterov accelerated gradient(论文4.2节) 算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值