原文链接:动手学深度学习pytorch版:7.8 Adam算法
github:https://github.com/ShusenTang/Dive-into-DL-PyTorch
[1] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
论文链接
Adam算法
Adam算法在RMSProp算法基础上对小批量随机梯度也做了指数加权移动平均 [1]。下面我们来介绍这个算法。
所以Adam算法可以看做是RMSProp算法与动量法的结合。
算法
Adam 算法使用了动量变量
v
t
v_t
vt 和 RMSProp 算法中小批量随机梯度按元素平方的指数加权移动平均变量
s
t
s_t
st,并子时间步0将它们中每个元素初始化为0。给定超参数
0
≤
β
1
<
1
0 ≤ β_1 < 1
0≤β1<1 (算法作者建议设置为 0.9),时间步
t
t
t 的动量变量
v
t
v_t
vt 即小批量随机梯度
g
t
g_t
gt 的质数加权移动平均:
v
t
←
β
1
v
t
−
1
+
(
1
−
β
1
)
g
t
{{\text{v}}_{t}}\leftarrow {{\beta }_{1}}{{\text{v}}_{t-1}}+(1-{{\beta }_{1}}){{g}_{t}}
vt←β1vt−1+(1−β1)gt
和RMSProp算法中一样,给定超参数
0
≤
β
2
<
1
0 ≤ β_2 < 1
0≤β2<1(算法作者建议设为0.999),将小批量随机梯度按元素平方后的项
g
t
⊙
g
t
{{g}_{t}}\odot {{g}_{t}}
gt⊙gt 做指数加权移动平均得到
s
t
s_t
st:
s
t
←
β
2
s
t
−
1
+
(
1
−
β
2
)
g
t
⊙
g
t
{{s}_{t}}\leftarrow {{\beta }_{2}}{{s}_{t-1}}+(1-{{\beta }_{2}}){{g}_{t}}\odot {{g}_{t}}
st←β2st−1+(1−β2)gt⊙gt
由于我们将
v
0
v_0
v0 和
s
0
s_0
s0 中的元素都初始化为0, 在时间步
t
t
t 我们得到
v
t
=
(
1
−
β
1
)
∑
i
=
1
t
β
1
t
−
i
g
i
{{v}_{t}}=(1-{{\beta }_{1}})\sum\nolimits_{i=1}^{t}{\beta _{1}^{t-i}{{g}_{i}}}
vt=(1−β1)∑i=1tβ1t−igi。将过去各时间步小批量随机梯度的权值相加,得到
(
1
−
β
1
)
∑
i
=
1
t
β
1
t
−
i
=
1
−
β
1
t
(1-{{\beta }_{1}})\sum\nolimits_{i=1}^{t}{\beta _{1}^{t-i}=1-}\beta _{1}^{t}
(1−β1)∑i=1tβ1t−i=1−β1t 。需要注意的是,当
t
t
t 较小时,过去各时间步小批量随机梯度权值之和会较小。例如,当
β
1
=
0.9
{{\beta }_{1}}=0.9
β1=0.9时,
v
1
=
0.1
g
1
{{v}_{1}}=0.1{{g}_{1}}
v1=0.1g1。为了消除这样的影响,对于任意时间步
t
t
t,我们可以将
v
t
v_t
vt 再除以
1
−
β
1
t
1-\beta _{1}^{t}
1−β1t,从而使过去各时间步小批量随机梯度权值之和为1.这也叫做偏差修正。在 Adam 算法中,我们对变量
v
t
v_t
vt 和
s
t
s_t
st 均作偏差修正:
v
^
t
←
v
t
1
−
β
1
t
{{\hat{v}}_{t}}\leftarrow \frac{{{v}_{t}}}{1-\beta _{1}^{t}}
v^t←1−β1tvt
s
^
←
s
t
1
−
β
2
t
\hat{s}\leftarrow \frac{{{s}_{t}}}{1-\beta _{2}^{t}}
s^←1−β2tst
接下来,Adam算法使用以上偏差修正后的变量
v
^
t
{{{\hat{v}}}_{t}}
v^t 和
s
^
{\hat{s}}
s^ ,将模型参数中每个元素的学习率通过按元素运算重新调整:
g
′
t
←
η
v
^
t
s
^
t
+
ε
g{{'}_{t}}\leftarrow \frac{\eta {{{\hat{v}}}_{t}}}{\sqrt{{{{\hat{s}}}_{t}}}+\varepsilon }
g′t←s^t+εηv^t
其中
η
\eta
η 是学习率,
ϵ
\epsilon
ϵ 是为了维持数值稳定性而添加的常数,如
1
0
−
8
10^{-8}
10−8。和 AdaGrad 算法、RMSProp 算法以及AdaDelta 算法一样,目标函数自变量中每个元素都分别拥有自己的学习率。最后,使用
g
t
′
g'_t
gt′ 迭代自变量:
x
t
←
x
t
−
1
−
g
t
′
{{x}_{t}}\leftarrow {{x}_{t-1}}-g_{t}^{'}
xt←xt−1−gt′
从零开始实现
我们按照Adam算法中的公式实现该算法。其中时间步
t
t
t 通过 hyperparams
参数传入 adam
函数。
%matplotlib inline
import torch
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
features, labels = d2l.get_data_ch7()
def init_adam_states():
v_w, v_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
return ((v_w, s_w), (v_b, s_b))
def adam(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-6
for p, (v, s) in zip(params, states):
v[:] = beta1 * v + (1 - beta1) * p.grad.data
s[:] = beta2 * s + (1 - beta2) * p.grad.data**2
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p.data -= hyperparams['lr'] * v_bias_corr / (torch.sqrt(s_bias_corr) + eps)
hyperparams['t'] += 1
使用学习率为0.01的Adam算法来训练模型。
d2l.train_ch7(adam, init_adam_states(), {'lr': 0.01, 't': 1}, features, labels)
输出:
loss: 0.245370, 0.065155 sec per epoch
简洁实现
通过名称为“Adam”的优化器实例,我们便可使用PyTorch提供的Adam算法。
d2l.train_pytorch_ch7(torch.optim.Adam, {'lr': 0.01}, features, labels)
输出:
loss: 0.242066, 0.056867 sec per epoch
小结
- Adam算法在RMSProp算法的基础上对小批量随机梯度也做了指数加权移动平均。
- Adam算法使用了偏差修正。