自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 收藏
  • 关注

原创 【论文阅读33】滑坡易发性 PINN ( EG2025 )

**把Newmark永久变形模型嵌入深度学习神经网络,利用物理约束提升滑坡易发性预测的空间泛化性与物理解释性**,且在空间交叉验证场景下显著优于纯数据驱动模型。

2025-06-13 10:11:13 449 1

原创 【论文阅读32】预期寿命预测(2024)

论文聚焦于滑坡寿命(滑坡失效时间)的动态预测,针对经典预测模型(Verhulst模型、GM(1,1)模型和Saito模型)在动态条件下表现不足的问题,提出了一种基于机器学习(ML)的集成系统,通过将多个经典模型的预测结果作为输入,利用机器学习算法(尤其是决策树回归器DTR)构建元模型,实现对滑坡寿命的更准确预测。

2025-06-12 14:30:41 846 1

原创 【论文阅读31】-CNN-LSTM(2025)-电池健康预测

本文提出了一个基于多模态充电数据和残差神经网络的 SOH 估算框架,利用真实 EV 车队大数据验证了方法的有效性,并实现开源发布,推动了电池健康管理从实验室走向实际应用。

2025-06-10 10:42:39 886 1

原创 【论文阅读30】Bi-LSTM(2024)

本文提出了一种用于滑坡检测的双向长短期记忆(LSTM)模型。

2025-06-08 16:58:22 806 1

原创 【论文阅读29】区间预测CIPM(2025)

这篇论文主要研究的是滑坡位移的区间预测方法,提出了一种新型的预测模型,叫做*合区间预测模型(CIPM),并以三峡库区的白家堡滑坡为案例进行了应用和验证。

2025-06-08 14:20:02 900 1

原创 【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。

2025-06-08 10:27:45 516 1

原创 【论文阅读27】-TCN–BiLSTM -滑坡预测

这篇论文提出了一种基于 ICEEMDAN 方法和 TCN–BiLSTM 组合神经网络的滑坡位移预测模型,先用 ICEEMDAN 将滑坡位移数据分解为趋势项和波动项,分别建模预测,趋势项采用三次多项式拟合,波动项通过 TCN 提取特征并输入 BiLSTM 进行预测,最终叠加得到总位移预测值。应用于四川万家湾滑坡实测数据,结果表明该方法较传统单模型具有更高的预测精度和工程应用价值,尤其适用于降雨型滑坡的高精度预警。

2025-05-09 10:22:42 1197 1

原创 【论文阅读26】贝叶斯-滑坡预测-不确定性

本文构建了一个综合性的边坡破坏数据库,提出了一种基于贝叶斯机器学习(BML)的方法,用于学习SFT预测中的模型与观测不确定性,从而获得SFT的概率分布。文中通过算例详细说明了该方法的实施过程。验证性研究表明,所提出的BML方法在SFT预测精度上优于传统的反速率法(INVM)与最大似然法。该方法为边坡破坏时间预测提供了一种有效的技术手段。

2025-05-01 21:21:37 1242 1

原创 【论文阅读】-周总结-第5周

链接论文信息:Liu S, Xu T, Du X, et al. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Conversion and Management, 2024, 302: 118122.内容总结:链接论文信息:Leinauer J, Weber S, Cicoira A, et

2025-04-27 20:08:34 902 1

原创 【贝叶斯定理01】白话贝叶斯(原理篇)

贝叶斯定理是一种描述在已知某些证据的情况下,如何更新某个事件概率的方法。

2025-04-25 20:30:46 1117

原创 【论文阅读25】-滑坡时间预测-PFTF

本文提出了一种前瞻性失稳时间预测方法(PFTF),可用于实时或拟实时预测滑坡、冰崩等地质灾害的失稳时间。该方法基于改进的反速度法(Inverse Velocity Method),通过多窗口平滑、迭代更新、以及自动识别加速起点(Onset of Acceleration, OOA)实现。

2025-04-23 17:07:32 931 1

原创 【论文阅读24】并行 TCN-LSTM(2024-02)

这篇论文主要提出并验证了一种用于风电功率预测的新型**混合深度学习模型**,其核心是基于**并行结构的 TCN-LSTM 模型结合 Savitzky-Golay (SG) 滤波器**。

2025-04-22 09:29:15 1203 1

原创 【论文阅读23】-地下水预测-TCN-LSTM-Attention(2024-11)

- 使用多种深度学习模型(如 LSTM、TCN、TCN-LSTM-Attention 等)来预测地下水位。- 通过将模型预测值与真实测量值进行对比,发现显著偏差的时段即被认为是**异常时期(SA period)**。- 并结合统计方法(如 EWMA 控制图)对残差进一步分析,精准识别异常开始时间。

2025-04-21 10:40:53 985 1

原创 【论文阅读-周总结】-第4周

类别论文编号模型结构/方法特点应用场景滑坡预测18阶梯状位移预测、组合深度模型滑坡长期监测滑坡预测20可解释性强,融合遥感数据多维数据预测滑坡预测21智能组合优化,预测区间估计工程案例应用方法基础19ResNet(残差网络)解决退化、稳定深层网络图像/时序模型骨架方法基础22简约模型优于Transformer时间序列预测新方向滑坡预测领域正在从“单一网络拟合”走向“多模块协同 + 可解释 + 不确定性建模”的新时代。

2025-04-20 06:15:00 796 1

原创 【论文阅读22】-DLinear / NLinear 时间序列模型 (AAAI-2023)

尽管Transformer在提取长序列中元素之间的语义相关性方面表现出色,但其自注意力机制的排列不变性可能导致时间信息的丢失。为验证这一观点,作者提出了一种名为LTSF-Linear的简单单层线性模型,并在九个真实数据集上进行了实验。结果显示,LTSF-Linear在所有情况下均优于现有的复杂Transformer模型,且优势显著。这项发现为LTSF任务开辟了新的研究方向,并建议重新评估Transformer在其他时间序列分析任务(如异常检测)中的有效性。

2025-04-20 00:15:00 970 1

原创 【机器学习-周总结】-第4周

链接]内容涵盖结构化写作技巧(IMRaD框架);图表绘制推荐:Origin、Matplotlib、PPT美化插件、Graphviz等;Tableau Public、SciDraw、论文图复现仓库等;写作建议段落首句明确主题;先图后文,图注简洁;模型结构图/流程图建议用draw.io或LaTeX TikZ绘制。📌启示:图文并茂的表达不仅增强论文可读性,也是科研成果传播力的关键。早规划、重逻辑、注细节是写作核心。模块内容收获延伸方向技术TCN基础 + 实战博客。

2025-04-19 20:23:42 839

原创 【论文阅读21】-PSOSVM-CNN-GRU-Attention-滑坡预测(2024-12)

这篇论文主要提出并验证了一种新型的混合智能模型(PSOSVM-CNN-GRU-Attention),用于准确预测滑坡的点位移,并构建可靠的位移预测区间。通过对Baishuihe滑坡和Shuping滑坡的案例分析,展示了该模型的出色性能。

2025-04-19 11:14:04 1115 1

原创 【论文阅读20】-CNN-Attention-BiGRU-滑坡预测(2025-03)

这篇论文主要探讨了基于深度学习的滑坡位移预测模型,结合了MT-InSAR(多时相合成孔径雷达干涉测量)观测数据,提出了一种具有可解释性的滑坡位移预测方法。

2025-04-18 20:45:07 1309 1

原创 【时序预测】-TCN 实战 | 完整代码+解析

这段代码构建的是一个 时间序列预测系统,使用 TCN(Temporal Convolutional Network)模型 来预测未来的数据趋势。这个系统从数据加载、模型定义、训练、验证、测试到最终预测都一应俱全,形成了一个完整的端到端预测流程。加载所需的库,包括 PyTorch、NumPy、Pandas、绘图工具、标准化工具、命令行参数解析等。

2025-04-18 02:00:00 3270

原创 科研论文写作与图表绘制工具总结

科研论文写作与图表绘制工具总结。

2025-04-17 08:42:02 615

原创 CSDN-markdown官方使用技巧(自用)

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:撤销:Ctrl/Command + Z重做:Ctrl/Command + Y加粗:Ctrl/Command + B斜体:Ctrl/Command + I标题:Ctrl/Command + S

2025-04-16 22:24:21 1239

原创 【论文阅读19】-Res-Net (​​CVPR 2016​​)-Deep Residual Learning for Image Recognition

这篇论文提出了深度残差学习框架,通过引入残差模块解决了深层神经网络训练中的退化问题。其核心创新是将传统的层间映射 $H(x)$ 转化为残差映射 $F(x) = H(x) - x$,通过**跳跃连接(Skip Connection)** 实现恒等映射的短路机制。这种设计让网络能更高效学习微小波动(当最优解接近恒等时),同时梯度可通过残差路径直接反向传播到底层,显著缓解了梯度消失问题。该方法在ImageNet等任务中实现了突破性性能,成为深度学习的基础架构之一。

2025-04-15 21:24:02 1068 1

原创 【时序预测05】-TCN (Temporal Convolutional Networks)

时间卷积网络(Temporal Convolutional Network,TCN)是一种通用的卷积架构,专为序列建模任务设计,旨在替代传统的循环神经网络(RNN)。TCN通过融合现代卷积网络中的最佳实践,具备更强的并行计算能力和更稳定的梯度传播,在音频合成、语言建模和机器翻译等任务中表现优异。相比递归模型,TCN不仅能缓解梯度消失或爆炸等问题,还在多个任务中展现出更优的性能,因而被视为序列建模的重要候选架构。

2025-04-15 16:34:54 1724

原创 【论文阅读18】-滑坡阶梯状位移预测-CNN+Bi-GRU+Attntion(2024-07)

这篇论文主要探讨了使用深度学习模型预测滑坡位移的方法,特别是针对具有阶梯状曲线特征的滑坡位移。文章的重点在于介绍了一种新的混合模型——CNN-BiGRU-Attention,并通过与其他模型(CNN-BiGRU、CNN-BiLSTM、BiGRU-Attention、SMA-GRU、SMA-LSTM、SMA-SVM、GRU和LSTM)的比较,证明了该模型在滑坡位移预测中的优越性。

2025-04-14 08:54:59 846 1

原创 【论文阅读-学习总结】- 第3周

本周共整理阅读了6篇与滑坡位移预测相关的研究论文,内容主要聚焦于**时间序列预测方法**,涵盖了**经典深度学习模型的对比分析**、**新兴架构(如 Transformer 变体(简化): SCINet)**,以及**生成对抗网络(GAN)在样本增强与模型提升方面的应用**。这些研究从不同角度出发,丰富了滑坡预测建模的技术路径,也为构建更高效、稳健且具可解释性的预测模型提供了理论参考和方法支持。

2025-04-13 10:18:19 910 1

原创 【论文阅读17】-LRSD 滑坡 预测 | 预警(一种基于位移残差的方法)

论文主要讨论了一种基于位移残差(displacement residuals)的方法,用于识别滑坡运动中的行为变化,特别是在滑坡发生前的预警过程中。

2025-04-12 10:15:36 1005 1

原创 【论文阅读16】- SCINet | NeurIPS (2022)

简单来说,这篇论文提出了一种新的时间序列预测模型,SCINet,强调了通过分层的下采样、卷积和交互学习机制来提高模型对时间依赖性的理解,进而提高预测的准确性。

2025-04-11 15:01:40 1209 1

原创 【机器学习练习-7】- LSTM | 含完整代码+数据集

本文将带你一步步搭建一个完整的 LSTM 时间序列预测系统:从数据预处理、模型设计,到训练可视化、预测评估,全流程覆盖。我们将以一个包含两个特征变量的时序数据集为例,搭建一个自动化的训练评估流程,从数据加载、预处理、模型训练到预测评估与结果可视化,全部实现自动保存、自动记录。 适合对 LSTM、深度学习在时间序列中的应用感兴趣的读者参考和实践。

2025-04-10 19:52:42 2386

原创 【论文阅读15】- MLP, LSTM, GRU, Bi-LSTM, CNN, Conv-LSTM 滑坡预测比较

该研究测试了七种深度学习方法(MLP, LSTM, 2xLSTM, GRU, Bi-LSTM, 1D CNN, Conv-LSTM)在四个不同滑坡案例中的效果。这些滑坡在地理位置、影响因素、地质背景、时间步长和测量传感器等方面各不相同。

2025-04-10 19:24:39 821 1

原创 【机器学习练习06】- MLP | 多层感知机 +含完整代码+数据集

本项目结合 CSDN 博客《 机器学习-29】- MLP(Multilayer Perceptron)多层感知机》中关于 MLP 的基础知识,通过 TensorFlow 和 Keras 实现了一个用于时间序列预测的多层感知机(MLP)模型。本文旨在预测地质灾害中某一特征(如差异位移)的未来变化趋势。

2025-04-09 02:45:00 2696

原创 【论文阅读14】- GAN - 生成对抗网络增强 滑坡位移预测 性能

这篇文章主要探讨了如何利用生成对抗网络(GAN)来增强滑坡位移预测模型的性能,特别是在数据稀缺的情况下。文章提出了一种新型的GAN模型——RGAN-LS( (Recurrent Generative Adversarial Networks for synthesizing LandSlide)),利用递归神经网络(RNN)来捕捉多变量时间序列数据中的复杂时间相关性,并通过生成合成样本来增强训练数据。

2025-04-09 00:30:00 1491 1

原创 【机器学习-29】- MLP(Multilayer Perceptron)多层感知机

**Multilayer Perceptron (MLP)**(多层感知机)是一种前馈神经网络(Feedforward Neural Network),由多个层(层次结构)组成,通常用于监督学习任务,如分类和回归。

2025-04-08 17:08:36 1105

原创 【论文阅读13】- Attention Is All You Need

这篇论文介绍了 **Transformer** 模型,它是第一个完全基于 **自注意力机制(self-attention)** 的序列转换模型,旨在替代传统的 **循环神经网络(RNN)** 或 **卷积神经网络(CNN)** 用于序列到序列的任务,如机器翻译。

2025-04-08 00:15:00 1065 1

原创 【时间序列预测学习04】-基本流程

时间序列预测不仅仅是选择一个模型进行拟合,更是一整套系统性的工作流程,涵盖了从数据收集到模型评估与调优的每一个环节。一个科学、合理的流程可以显著提升预测的准确性与稳定性。本节为时间序列预测的基本步骤。

2025-04-07 10:37:30 448

原创 【论文阅读12】-时序预测-LiteTransNet(Transformer 简化)

这篇论文提出了 LiteTransNet,一种轻量化的 Transformer 网络,旨在提升滑坡位移预测的准确性、可解释性和计算效率。通过减少模型层数和注意力头数,LiteTransNet 保留了自注意力机制,减少了可训练参数,避免了过拟合,并提高了计算效率。尽管参数量较传统 RNN(如 LSTM 和 GRU)多,但得益于 Transformer 的并行计算能力,LiteTransNet 的训练效率提升了约 100%。

2025-04-07 10:08:01 414 1

原创 【机器学习总结】- 第二周

继上周即【机器学习总结】- 第一周 学习之后,本周学习内容的系统化总结,按知识模块分类整理:

2025-04-06 21:20:22 725

原创 【论文阅读-学习总结】- 第二周

本周共阅读 4 篇与**时空预测与序列建模**相关的论文,其中包括 **2 篇关于 STGCN 的研究** 和 **2 篇关于 TCN 的研究**。

2025-04-06 19:44:46 39 1

原创 【时间序列预测03】-LSTM 长短期记忆网络(Long Short-Term Memory)

长短期记忆网络(Long Short-Term Memory,LSTM)是一种改进的递归神经网络(RNN)架构,专为处理和预测时间序列中的长期依赖问题而设计。相比传统RNN,LSTM在建模复杂的、非线性的时间序列数据方面更具优势。其核心创新在于引入了三个关键的“门”结构:输入门、遗忘门和输出门。这些门控机制使得LSTM能够有选择性地接收、保留或遗忘信息,从而有效地缓解了梯度消失或梯度爆炸带来的训练困难。通过精细控制信息的流动,LSTM可以在保留关键历史信息的同时,剔除无关内容,实现对序列数据中长期与短期依赖

2025-04-06 00:15:00 1598

原创 【时间序列预测02】-GRU 门控循环单元(Gated Recurrent Unit )

门控循环单元(GRU)是一种改进的循环神经网络(RNN)结构,通过引入**更新门**和**重置门**解决传统RNN的梯度消失问题,有效捕捉长期依赖关系。

2025-04-05 09:00:34 1316

原创 【时间序列预测01】-RNN-循环神经网络(Recurrent Neural Network)

RNN(循环神经网络Recurrent Neural Network)是一种专门用于处理序列数据的神经网络,它通过引入“隐藏状态”将前一步的信息传递到下一步,从而具有记忆能力,适合处理如文本、语音、时间序列等任务。与传统神经网络不同,RNN 能捕捉输入数据之间的时间或顺序关系。

2025-04-04 19:56:06 977

机器学习练习-6-MLP和 7 - LSTM数据集

机器学习练习-6-MLP和 7 - LSTM数据集

2025-04-13

【机器学习练习 5】 - 偏差和方差

【机器学习练习 5】 - 偏差和方差

2025-04-02

BP神经网络练习题数据集

对于这个练习,我们将再次处理手写数字数据集,这次使用反向传播的前馈神经网络。 我们将通过反向传播算法实现神经网络成本函数和梯度计算的非正则化和正则化版本。 我们还将实现随机权重初始化和使用网络进行预测的方法。

2025-04-01

ex3-neural network-数据集

ex3-neural network-数据集

2025-03-31

逻辑回归ex2-logistic-regression-ex2

逻辑回归ex2-logistic-regression-ex2

2025-03-30

逻辑回归ex2-logistic-regression-ex2data2

逻辑回归ex2-logistic-regression-ex2data2

2025-03-30

逻辑回归ex2-logistic-regression-ex2data1

逻辑回归ex2-logistic-regression-ex2data1

2025-03-30

线性回归练习1-2数据集-Multivariate-Linear-Regression

线性回归练习1-2数据集-Multivariate-Linear-Regression

2025-03-29

线性回归练习1数据集-ex1-linear-regression-ex1data1

线性回归练习1数据集-ex1-linear-regression-ex1data1

2025-03-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除