- 博客(117)
- 收藏
- 关注
原创 【机器学习30】-GAT代码中——以及常见激活函数和loss函数
GAT出现以及常见激活函数和 loss 函数**LeakyReLU****ELU (Exponential Linear Unit)****负对数似然损失(Negative Log Likelihood Loss, NLLLoss)**
2025-08-31 18:19:59
699
原创 【机器学习】-torch相关知识01
问题1 torch.empty nn.init.xavier问题2 `nn.Parameter` 是什么?问题3 self.add_module问题4 `torch.matmul` `torch.mm`
2025-08-31 17:54:55
1277
原创 【论文阅读69】-DeepHGNN复杂分层结构下的预测
这篇论文提出的 **DeepHGNN** 框架,把层级时间序列预测问题转化为图学习问题,通过 **图神经网络 + 层级插值 + 端到端一致性** 来提升预测精度和层级一致性,在实验中优于现有方法。
2025-08-18 10:19:22
702
原创 【论文阅读53】-CNN-LSTM-滑坡风险随时间变化研究
这篇论文创新性地将深度学习中 CNN 和 LSTM 结合,提出了一种**高效、自动化的滑坡时变风险评估框架**,为滑坡风险管理提供了新思路和实用工具。
2025-07-28 10:42:12
1214
原创 【论文阅读51】-CNN-LSTM-安全系数和失效概率预测
总结来说,这篇论文提出并验证了一个创新的深度学习模拟器,能高效准确地实现滑坡灾害的时变概率预测
2025-07-25 15:18:49
1454
原创 【论文阅读47】-微震事件的时间、空间和强度(能量)预测
论文围绕**煤矿开采过程中高能矿山微震事件的时间、空间和强度(能量)预测问题**,提出了一种**融合深度学习与数据分解思想的分层信息预测模型 CHIM-Net**。
2025-07-13 15:32:25
713
原创 【论文阅读46】-微震预测 | 输入是时域波形信号,输出是事件三维坐标(X、Y、Z)
本文以矿山微震监测系统采集的微震事件波形数据为基础,构建微震震源定位回归模型。**输入特征为原始微震波形数据(时域信号序列)**,通过人工拾取的 P 波到时点截取固定长度波形段,**未进行频域变换或时频分析**,直接输入深度学习模型。**输出特征为微震事件对应的空间三维坐标($X$、$Y$、$Z$)**,模型通过回归任务实现微震事件震源位置预测。没有做频谱、时频特征提取,直接依赖 LSTM-FCNN 自动提取时空相关特征和长期依赖性。
2025-07-13 10:55:45
569
原创 【论文阅读41】-LSTM-PINN预测人口
这篇论文提出了一种面向**年龄结构化人口预测问题**的**LSTM-PINN 混合方法**。针对现有模型难以同时处理**长期时间依赖性**与**政策驱动的人口异质性**问题,作者构建了两种深度学习框架:
2025-07-06 10:44:53
1335
3
原创 【论文阅读40】TG-PhyNN 用以提升 GNN 在复杂动态图时空预测
提出一种将物理约束机制嵌入图神经网络的通用方法,命名为 TG-PhyNN,用以提升 GNN 在复杂动态图时空预测任务中的性能和物理一致性。
2025-07-03 10:15:04
1381
3
原创 【论文阅读39】PINN求边坡内时空变化的地震动响应(位移、速度、加速度)场分布
论文提出了一种基于物理信息神经网络(PINN)和极限分析上界定理相结合的岩体边坡地震稳定性分析框架,重点考虑了边坡中的预存裂缝对稳定性的影响。PINN用来求解岩质边坡内随时间和空间变化的地震动响应(位移、速度、加速度)场分布。
2025-07-02 10:38:12
1433
1
原创 【论文阅读38】-结合应力预测位移
这篇论文提出了一种物理信息约束数据同化方法(PIDA,Physics-Informed Data Assimilation),用于预测受水动力压力驱动滑坡的变形位移。(不是PINN)
2025-07-01 14:35:35
1314
1
原创 【论文阅读36】- Graph Attention Network(2025)
这篇论文主要介绍了一种基于改进型图注意力网络(Graph Attention Network, GAT)的滑坡变形异质性监测方法。该方法通过融合多尺度时间嵌入和自适应图学习,能够同时捕捉监测点之间复杂的时空依赖关系,有效反映滑坡的局部与整体变形特征。
2025-06-24 11:10:22
1288
1
原创 【论文阅读35】-PINN review(2021)
这篇综述全面回顾了物理信息机器学习的原理、应用、软件实现、理论进展与未来发展趋势,这样即使数据稀疏、带噪,也能保证预测结果符合物理规律,适合解决偏微分方程正问题、反问题、非线性动力学和多物理耦合系统等科学计算场景。
2025-06-23 20:41:46
1544
1
原创 《动手学深度学习》-3.7. softmax回归的实现 | 代码+数据集
就像我们从零开始实现线性回归一样, 我们认为softmax回归也是重要的基础,因此应该知道实现softmax回归的细节。 本节我们将使用刚刚在 3.5节中引入的Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。
2025-06-20 16:14:52
672
原创 【论文阅读34】Attention-ResNet-LSTM(JRMGE2024)
论文提出了一种新的混合深度学习模型——**Attention-ResNet-LSTM**,用于实时预测盾构机(TBM)的掘进速度(Advance Rate,简称AR)。该模型结合了注意力机制(Attention)、残差网络(ResNet)和长短时记忆网络(LSTM),旨在充分挖掘盾构掘进过程中复杂的时空非线性特征。
2025-06-14 15:12:56
1130
1
原创 【论文阅读33】滑坡易发性 PINN ( EG2025 )
**把Newmark永久变形模型嵌入深度学习神经网络,利用物理约束提升滑坡易发性预测的空间泛化性与物理解释性**,且在空间交叉验证场景下显著优于纯数据驱动模型。
2025-06-13 10:11:13
1470
1
原创 【论文阅读32】预期寿命预测(2024)
论文聚焦于滑坡寿命(滑坡失效时间)的动态预测,针对经典预测模型(Verhulst模型、GM(1,1)模型和Saito模型)在动态条件下表现不足的问题,提出了一种基于机器学习(ML)的集成系统,通过将多个经典模型的预测结果作为输入,利用机器学习算法(尤其是决策树回归器DTR)构建元模型,实现对滑坡寿命的更准确预测。
2025-06-12 14:30:41
1430
1
原创 【论文阅读31】-CNN-LSTM(2025)-电池健康预测
本文提出了一个基于多模态充电数据和残差神经网络的 SOH 估算框架,利用真实 EV 车队大数据验证了方法的有效性,并实现开源发布,推动了电池健康管理从实验室走向实际应用。
2025-06-10 10:42:39
2525
3
原创 【论文阅读29】区间预测CIPM(2025)
这篇论文主要研究的是滑坡位移的区间预测方法,提出了一种新型的预测模型,叫做*合区间预测模型(CIPM),并以三峡库区的白家堡滑坡为案例进行了应用和验证。
2025-06-08 14:20:02
1261
1
原创 【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。
2025-06-08 10:27:45
914
1
原创 【论文阅读27】-TCN–BiLSTM -滑坡预测
这篇论文提出了一种基于 ICEEMDAN 方法和 TCN–BiLSTM 组合神经网络的滑坡位移预测模型,先用 ICEEMDAN 将滑坡位移数据分解为趋势项和波动项,分别建模预测,趋势项采用三次多项式拟合,波动项通过 TCN 提取特征并输入 BiLSTM 进行预测,最终叠加得到总位移预测值。应用于四川万家湾滑坡实测数据,结果表明该方法较传统单模型具有更高的预测精度和工程应用价值,尤其适用于降雨型滑坡的高精度预警。
2025-05-09 10:22:42
1606
1
原创 【论文阅读26】贝叶斯-滑坡预测-不确定性
本文构建了一个综合性的边坡破坏数据库,提出了一种基于贝叶斯机器学习(BML)的方法,用于学习SFT预测中的模型与观测不确定性,从而获得SFT的概率分布。文中通过算例详细说明了该方法的实施过程。验证性研究表明,所提出的BML方法在SFT预测精度上优于传统的反速率法(INVM)与最大似然法。该方法为边坡破坏时间预测提供了一种有效的技术手段。
2025-05-01 21:21:37
1546
1
原创 【论文阅读】-周总结-第5周
链接论文信息:Liu S, Xu T, Du X, et al. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Conversion and Management, 2024, 302: 118122.内容总结:链接论文信息:Leinauer J, Weber S, Cicoira A, et
2025-04-27 20:08:34
950
1
原创 【论文阅读25】-滑坡时间预测-PFTF
本文提出了一种前瞻性失稳时间预测方法(PFTF),可用于实时或拟实时预测滑坡、冰崩等地质灾害的失稳时间。该方法基于改进的反速度法(Inverse Velocity Method),通过多窗口平滑、迭代更新、以及自动识别加速起点(Onset of Acceleration, OOA)实现。
2025-04-23 17:07:32
1178
1
原创 【论文阅读24】并行 TCN-LSTM(2024-02)
这篇论文主要提出并验证了一种用于风电功率预测的新型**混合深度学习模型**,其核心是基于**并行结构的 TCN-LSTM 模型结合 Savitzky-Golay (SG) 滤波器**。
2025-04-22 09:29:15
1567
1
原创 【论文阅读23】-地下水预测-TCN-LSTM-Attention(2024-11)
- 使用多种深度学习模型(如 LSTM、TCN、TCN-LSTM-Attention 等)来预测地下水位。- 通过将模型预测值与真实测量值进行对比,发现显著偏差的时段即被认为是**异常时期(SA period)**。- 并结合统计方法(如 EWMA 控制图)对残差进一步分析,精准识别异常开始时间。
2025-04-21 10:40:53
1358
1
原创 【论文阅读-周总结】-第4周
类别论文编号模型结构/方法特点应用场景滑坡预测18阶梯状位移预测、组合深度模型滑坡长期监测滑坡预测20可解释性强,融合遥感数据多维数据预测滑坡预测21智能组合优化,预测区间估计工程案例应用方法基础19ResNet(残差网络)解决退化、稳定深层网络图像/时序模型骨架方法基础22简约模型优于Transformer时间序列预测新方向滑坡预测领域正在从“单一网络拟合”走向“多模块协同 + 可解释 + 不确定性建模”的新时代。
2025-04-20 06:15:00
891
1
原创 【论文阅读22】-DLinear / NLinear 时间序列模型 (AAAI-2023)
尽管Transformer在提取长序列中元素之间的语义相关性方面表现出色,但其自注意力机制的排列不变性可能导致时间信息的丢失。为验证这一观点,作者提出了一种名为LTSF-Linear的简单单层线性模型,并在九个真实数据集上进行了实验。结果显示,LTSF-Linear在所有情况下均优于现有的复杂Transformer模型,且优势显著。这项发现为LTSF任务开辟了新的研究方向,并建议重新评估Transformer在其他时间序列分析任务(如异常检测)中的有效性。
2025-04-20 00:15:00
1432
1
原创 【机器学习-周总结】-第4周
链接]内容涵盖结构化写作技巧(IMRaD框架);图表绘制推荐:Origin、Matplotlib、PPT美化插件、Graphviz等;Tableau Public、SciDraw、论文图复现仓库等;写作建议段落首句明确主题;先图后文,图注简洁;模型结构图/流程图建议用draw.io或LaTeX TikZ绘制。📌启示:图文并茂的表达不仅增强论文可读性,也是科研成果传播力的关键。早规划、重逻辑、注细节是写作核心。模块内容收获延伸方向技术TCN基础 + 实战博客。
2025-04-19 20:23:42
904
BP神经网络练习题数据集
2025-04-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅