自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(117)
  • 收藏
  • 关注

原创 伽辽金法求解偏微分方程与有限元中的权函数和试函数

伽辽金法求解偏微分方程与有限元中的权函数和试函数,加案例详解

2025-11-13 09:08:51 1105

原创 基于虚功原理的一维拉伸杆推导

基于虚功原理的一维拉伸杆推导

2025-10-24 09:42:30 428

原创 有限元方法核心原理与学习路径:从一维基础到多维拓展(七步流程)

有限元核心原理:从一维基础到多维拓展(七步流程)

2025-10-23 21:46:55 886

原创 【时序预测04】-Transformer Is All You Need

Transformer Is All You Need

2025-10-02 20:17:27 1161

原创 【机器学习30】-GAT代码中——以及常见激活函数和loss函数

GAT出现以及常见激活函数和 loss 函数**LeakyReLU****ELU (Exponential Linear Unit)****负对数似然损失(Negative Log Likelihood Loss, NLLLoss)**

2025-08-31 18:19:59 699

原创 【机器学习】-torch相关知识01

问题1 torch.empty nn.init.xavier问题2 `nn.Parameter` 是什么?问题3 self.add_module问题4 `torch.matmul` `torch.mm`

2025-08-31 17:54:55 1277

原创 【论文阅读69】-DeepHGNN复杂分层结构下的预测

这篇论文提出的 **DeepHGNN** 框架,把层级时间序列预测问题转化为图学习问题,通过 **图神经网络 + 层级插值 + 端到端一致性** 来提升预测精度和层级一致性,在实验中优于现有方法。

2025-08-18 10:19:22 702

原创 【论文阅读53】-CNN-LSTM-滑坡风险随时间变化研究

这篇论文创新性地将深度学习中 CNN 和 LSTM 结合,提出了一种**高效、自动化的滑坡时变风险评估框架**,为滑坡风险管理提供了新思路和实用工具。

2025-07-28 10:42:12 1214

原创 【论文阅读51】-CNN-LSTM-安全系数和失效概率预测

总结来说,这篇论文提出并验证了一个创新的深度学习模拟器,能高效准确地实现滑坡灾害的时变概率预测

2025-07-25 15:18:49 1454

原创 【论文阅读50】-融合领域知识与可解释深度学习

这篇论文提出了一种融合领域知识与可解释深度学习的新方法,用于滑坡形变的时空预测。

2025-07-24 16:58:38 1260

原创 【论文阅读47】-微震事件的时间、空间和强度(能量)预测

论文围绕**煤矿开采过程中高能矿山微震事件的时间、空间和强度(能量)预测问题**,提出了一种**融合深度学习与数据分解思想的分层信息预测模型 CHIM-Net**。

2025-07-13 15:32:25 713

原创 【论文阅读46】-微震预测 | 输入是时域波形信号,输出是事件三维坐标(X、Y、Z)

本文以矿山微震监测系统采集的微震事件波形数据为基础,构建微震震源定位回归模型。**输入特征为原始微震波形数据(时域信号序列)**,通过人工拾取的 P 波到时点截取固定长度波形段,**未进行频域变换或时频分析**,直接输入深度学习模型。**输出特征为微震事件对应的空间三维坐标($X$、$Y$、$Z$)**,模型通过回归任务实现微震事件震源位置预测。没有做频谱、时频特征提取,直接依赖 LSTM-FCNN 自动提取时空相关特征和长期依赖性。

2025-07-13 10:55:45 569

原创 【论文阅读41】-LSTM-PINN预测人口

这篇论文提出了一种面向**年龄结构化人口预测问题**的**LSTM-PINN 混合方法**。针对现有模型难以同时处理**长期时间依赖性**与**政策驱动的人口异质性**问题,作者构建了两种深度学习框架:

2025-07-06 10:44:53 1335 3

原创 【论文阅读40】TG-PhyNN 用以提升 GNN 在复杂动态图时空预测

提出一种将物理约束机制嵌入图神经网络的通用方法,命名为 TG-PhyNN,用以提升 GNN 在复杂动态图时空预测任务中的性能和物理一致性。

2025-07-03 10:15:04 1381 3

原创 【论文阅读39】PINN求边坡内时空变化的地震动响应(位移、速度、加速度)场分布

论文提出了一种基于物理信息神经网络(PINN)和极限分析上界定理相结合的岩体边坡地震稳定性分析框架,重点考虑了边坡中的预存裂缝对稳定性的影响。PINN用来求解岩质边坡内随时间和空间变化的地震动响应(位移、速度、加速度)场分布。

2025-07-02 10:38:12 1433 1

原创 【论文阅读38】-结合应力预测位移

这篇论文提出了一种物理信息约束数据同化方法(PIDA,Physics-Informed Data Assimilation),用于预测受水动力压力驱动滑坡的变形位移。(不是PINN)

2025-07-01 14:35:35 1314 1

原创 《动手学深度学习》- 2.4. 微积分

导数、微分、偏导数、链式法则以及梯度和向量场知识

2025-06-25 16:07:05 952

原创 【论文阅读36】- Graph Attention Network(2025)

这篇论文主要介绍了一种基于改进型图注意力网络(Graph Attention Network, GAT)的滑坡变形异质性监测方法。该方法通过融合多尺度时间嵌入和自适应图学习,能够同时捕捉监测点之间复杂的时空依赖关系,有效反映滑坡的局部与整体变形特征。

2025-06-24 11:10:22 1288 1

原创 【论文阅读35】-PINN review(2021)

这篇综述全面回顾了物理信息机器学习的原理、应用、软件实现、理论进展与未来发展趋势,这样即使数据稀疏、带噪,也能保证预测结果符合物理规律,适合解决偏微分方程正问题、反问题、非线性动力学和多物理耦合系统等科学计算场景。

2025-06-23 20:41:46 1544 1

原创 《动手学深度学习》-3.7. softmax回归的实现 | 代码+数据集

就像我们从零开始实现线性回归一样, 我们认为softmax回归也是重要的基础,因此应该知道实现softmax回归的细节。 本节我们将使用刚刚在 3.5节中引入的Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。

2025-06-20 16:14:52 672

原创 《动手学深度学习》- 2.3. 线性代数

在介绍完如何存储和操作数据后,接下来将简要地回顾一下部分基本线性代数内容。

2025-06-20 15:38:02 466

原创 《动手学深度学习》-2.2 数据预处理

为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始,

2025-06-15 20:00:13 661

原创 《动手学深度学习》-2.1. 数据操作

动手学深度学习 by 阿斯顿·张 扎卡里 C. 立顿 李沐

2025-06-14 20:42:23 650

原创 【论文阅读34】Attention-ResNet-LSTM(JRMGE2024)

论文提出了一种新的混合深度学习模型——**Attention-ResNet-LSTM**,用于实时预测盾构机(TBM)的掘进速度(Advance Rate,简称AR)。该模型结合了注意力机制(Attention)、残差网络(ResNet)和长短时记忆网络(LSTM),旨在充分挖掘盾构掘进过程中复杂的时空非线性特征。

2025-06-14 15:12:56 1130 1

原创 【论文阅读33】滑坡易发性 PINN ( EG2025 )

**把Newmark永久变形模型嵌入深度学习神经网络,利用物理约束提升滑坡易发性预测的空间泛化性与物理解释性**,且在空间交叉验证场景下显著优于纯数据驱动模型。

2025-06-13 10:11:13 1470 1

原创 【论文阅读32】预期寿命预测(2024)

论文聚焦于滑坡寿命(滑坡失效时间)的动态预测,针对经典预测模型(Verhulst模型、GM(1,1)模型和Saito模型)在动态条件下表现不足的问题,提出了一种基于机器学习(ML)的集成系统,通过将多个经典模型的预测结果作为输入,利用机器学习算法(尤其是决策树回归器DTR)构建元模型,实现对滑坡寿命的更准确预测。

2025-06-12 14:30:41 1430 1

原创 【论文阅读31】-CNN-LSTM(2025)-电池健康预测

本文提出了一个基于多模态充电数据和残差神经网络的 SOH 估算框架,利用真实 EV 车队大数据验证了方法的有效性,并实现开源发布,推动了电池健康管理从实验室走向实际应用。

2025-06-10 10:42:39 2525 3

原创 【论文阅读30】Bi-LSTM(2024)

本文提出了一种用于滑坡检测的双向长短期记忆(LSTM)模型。

2025-06-08 16:58:22 1113 1

原创 【论文阅读29】区间预测CIPM(2025)

这篇论文主要研究的是滑坡位移的区间预测方法,提出了一种新型的预测模型,叫做*合区间预测模型(CIPM),并以三峡库区的白家堡滑坡为案例进行了应用和验证。

2025-06-08 14:20:02 1261 1

原创 【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。

2025-06-08 10:27:45 914 1

原创 【论文阅读27】-TCN–BiLSTM -滑坡预测

这篇论文提出了一种基于 ICEEMDAN 方法和 TCN–BiLSTM 组合神经网络的滑坡位移预测模型,先用 ICEEMDAN 将滑坡位移数据分解为趋势项和波动项,分别建模预测,趋势项采用三次多项式拟合,波动项通过 TCN 提取特征并输入 BiLSTM 进行预测,最终叠加得到总位移预测值。应用于四川万家湾滑坡实测数据,结果表明该方法较传统单模型具有更高的预测精度和工程应用价值,尤其适用于降雨型滑坡的高精度预警。

2025-05-09 10:22:42 1606 1

原创 【论文阅读26】贝叶斯-滑坡预测-不确定性

本文构建了一个综合性的边坡破坏数据库,提出了一种基于贝叶斯机器学习(BML)的方法,用于学习SFT预测中的模型与观测不确定性,从而获得SFT的概率分布。文中通过算例详细说明了该方法的实施过程。验证性研究表明,所提出的BML方法在SFT预测精度上优于传统的反速率法(INVM)与最大似然法。该方法为边坡破坏时间预测提供了一种有效的技术手段。

2025-05-01 21:21:37 1546 1

原创 【论文阅读】-周总结-第5周

链接论文信息:Liu S, Xu T, Du X, et al. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Conversion and Management, 2024, 302: 118122.内容总结:链接论文信息:Leinauer J, Weber S, Cicoira A, et

2025-04-27 20:08:34 950 1

原创 【贝叶斯定理01】白话贝叶斯(原理篇)

贝叶斯定理是一种描述在已知某些证据的情况下,如何更新某个事件概率的方法。

2025-04-25 20:30:46 2499

原创 【论文阅读25】-滑坡时间预测-PFTF

本文提出了一种前瞻性失稳时间预测方法(PFTF),可用于实时或拟实时预测滑坡、冰崩等地质灾害的失稳时间。该方法基于改进的反速度法(Inverse Velocity Method),通过多窗口平滑、迭代更新、以及自动识别加速起点(Onset of Acceleration, OOA)实现。

2025-04-23 17:07:32 1178 1

原创 【论文阅读24】并行 TCN-LSTM(2024-02)

这篇论文主要提出并验证了一种用于风电功率预测的新型**混合深度学习模型**,其核心是基于**并行结构的 TCN-LSTM 模型结合 Savitzky-Golay (SG) 滤波器**。

2025-04-22 09:29:15 1567 1

原创 【论文阅读23】-地下水预测-TCN-LSTM-Attention(2024-11)

- 使用多种深度学习模型(如 LSTM、TCN、TCN-LSTM-Attention 等)来预测地下水位。- 通过将模型预测值与真实测量值进行对比,发现显著偏差的时段即被认为是**异常时期(SA period)**。- 并结合统计方法(如 EWMA 控制图)对残差进一步分析,精准识别异常开始时间。

2025-04-21 10:40:53 1358 1

原创 【论文阅读-周总结】-第4周

类别论文编号模型结构/方法特点应用场景滑坡预测18阶梯状位移预测、组合深度模型滑坡长期监测滑坡预测20可解释性强,融合遥感数据多维数据预测滑坡预测21智能组合优化,预测区间估计工程案例应用方法基础19ResNet(残差网络)解决退化、稳定深层网络图像/时序模型骨架方法基础22简约模型优于Transformer时间序列预测新方向滑坡预测领域正在从“单一网络拟合”走向“多模块协同 + 可解释 + 不确定性建模”的新时代。

2025-04-20 06:15:00 891 1

原创 【论文阅读22】-DLinear / NLinear 时间序列模型 (AAAI-2023)

尽管Transformer在提取长序列中元素之间的语义相关性方面表现出色,但其自注意力机制的排列不变性可能导致时间信息的丢失。为验证这一观点,作者提出了一种名为LTSF-Linear的简单单层线性模型,并在九个真实数据集上进行了实验。结果显示,LTSF-Linear在所有情况下均优于现有的复杂Transformer模型,且优势显著。这项发现为LTSF任务开辟了新的研究方向,并建议重新评估Transformer在其他时间序列分析任务(如异常检测)中的有效性。

2025-04-20 00:15:00 1432 1

原创 【机器学习-周总结】-第4周

链接]内容涵盖结构化写作技巧(IMRaD框架);图表绘制推荐:Origin、Matplotlib、PPT美化插件、Graphviz等;Tableau Public、SciDraw、论文图复现仓库等;写作建议段落首句明确主题;先图后文,图注简洁;模型结构图/流程图建议用draw.io或LaTeX TikZ绘制。📌启示:图文并茂的表达不仅增强论文可读性,也是科研成果传播力的关键。早规划、重逻辑、注细节是写作核心。模块内容收获延伸方向技术TCN基础 + 实战博客。

2025-04-19 20:23:42 904

机器学习练习-6-MLP和 7 - LSTM数据集

机器学习练习-6-MLP和 7 - LSTM数据集

2025-04-13

【机器学习练习 5】 - 偏差和方差

【机器学习练习 5】 - 偏差和方差

2025-04-02

BP神经网络练习题数据集

对于这个练习,我们将再次处理手写数字数据集,这次使用反向传播的前馈神经网络。 我们将通过反向传播算法实现神经网络成本函数和梯度计算的非正则化和正则化版本。 我们还将实现随机权重初始化和使用网络进行预测的方法。

2025-04-01

ex3-neural network-数据集

ex3-neural network-数据集

2025-03-31

逻辑回归ex2-logistic-regression-ex2

逻辑回归ex2-logistic-regression-ex2

2025-03-30

逻辑回归ex2-logistic-regression-ex2data2

逻辑回归ex2-logistic-regression-ex2data2

2025-03-30

逻辑回归ex2-logistic-regression-ex2data1

逻辑回归ex2-logistic-regression-ex2data1

2025-03-30

线性回归练习1-2数据集-Multivariate-Linear-Regression

线性回归练习1-2数据集-Multivariate-Linear-Regression

2025-03-29

线性回归练习1数据集-ex1-linear-regression-ex1data1

线性回归练习1数据集-ex1-linear-regression-ex1data1

2025-03-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除