- 博客(93)
- 收藏
- 关注
原创 【论文阅读33】滑坡易发性 PINN ( EG2025 )
**把Newmark永久变形模型嵌入深度学习神经网络,利用物理约束提升滑坡易发性预测的空间泛化性与物理解释性**,且在空间交叉验证场景下显著优于纯数据驱动模型。
2025-06-13 10:11:13
449
1
原创 【论文阅读32】预期寿命预测(2024)
论文聚焦于滑坡寿命(滑坡失效时间)的动态预测,针对经典预测模型(Verhulst模型、GM(1,1)模型和Saito模型)在动态条件下表现不足的问题,提出了一种基于机器学习(ML)的集成系统,通过将多个经典模型的预测结果作为输入,利用机器学习算法(尤其是决策树回归器DTR)构建元模型,实现对滑坡寿命的更准确预测。
2025-06-12 14:30:41
846
1
原创 【论文阅读31】-CNN-LSTM(2025)-电池健康预测
本文提出了一个基于多模态充电数据和残差神经网络的 SOH 估算框架,利用真实 EV 车队大数据验证了方法的有效性,并实现开源发布,推动了电池健康管理从实验室走向实际应用。
2025-06-10 10:42:39
886
1
原创 【论文阅读29】区间预测CIPM(2025)
这篇论文主要研究的是滑坡位移的区间预测方法,提出了一种新型的预测模型,叫做*合区间预测模型(CIPM),并以三峡库区的白家堡滑坡为案例进行了应用和验证。
2025-06-08 14:20:02
900
1
原创 【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。
2025-06-08 10:27:45
516
1
原创 【论文阅读27】-TCN–BiLSTM -滑坡预测
这篇论文提出了一种基于 ICEEMDAN 方法和 TCN–BiLSTM 组合神经网络的滑坡位移预测模型,先用 ICEEMDAN 将滑坡位移数据分解为趋势项和波动项,分别建模预测,趋势项采用三次多项式拟合,波动项通过 TCN 提取特征并输入 BiLSTM 进行预测,最终叠加得到总位移预测值。应用于四川万家湾滑坡实测数据,结果表明该方法较传统单模型具有更高的预测精度和工程应用价值,尤其适用于降雨型滑坡的高精度预警。
2025-05-09 10:22:42
1197
1
原创 【论文阅读26】贝叶斯-滑坡预测-不确定性
本文构建了一个综合性的边坡破坏数据库,提出了一种基于贝叶斯机器学习(BML)的方法,用于学习SFT预测中的模型与观测不确定性,从而获得SFT的概率分布。文中通过算例详细说明了该方法的实施过程。验证性研究表明,所提出的BML方法在SFT预测精度上优于传统的反速率法(INVM)与最大似然法。该方法为边坡破坏时间预测提供了一种有效的技术手段。
2025-05-01 21:21:37
1242
1
原创 【论文阅读】-周总结-第5周
链接论文信息:Liu S, Xu T, Du X, et al. A hybrid deep learning model based on parallel architecture TCN-LSTM with Savitzky-Golay filter for wind power prediction. Energy Conversion and Management, 2024, 302: 118122.内容总结:链接论文信息:Leinauer J, Weber S, Cicoira A, et
2025-04-27 20:08:34
902
1
原创 【论文阅读25】-滑坡时间预测-PFTF
本文提出了一种前瞻性失稳时间预测方法(PFTF),可用于实时或拟实时预测滑坡、冰崩等地质灾害的失稳时间。该方法基于改进的反速度法(Inverse Velocity Method),通过多窗口平滑、迭代更新、以及自动识别加速起点(Onset of Acceleration, OOA)实现。
2025-04-23 17:07:32
931
1
原创 【论文阅读24】并行 TCN-LSTM(2024-02)
这篇论文主要提出并验证了一种用于风电功率预测的新型**混合深度学习模型**,其核心是基于**并行结构的 TCN-LSTM 模型结合 Savitzky-Golay (SG) 滤波器**。
2025-04-22 09:29:15
1203
1
原创 【论文阅读23】-地下水预测-TCN-LSTM-Attention(2024-11)
- 使用多种深度学习模型(如 LSTM、TCN、TCN-LSTM-Attention 等)来预测地下水位。- 通过将模型预测值与真实测量值进行对比,发现显著偏差的时段即被认为是**异常时期(SA period)**。- 并结合统计方法(如 EWMA 控制图)对残差进一步分析,精准识别异常开始时间。
2025-04-21 10:40:53
985
1
原创 【论文阅读-周总结】-第4周
类别论文编号模型结构/方法特点应用场景滑坡预测18阶梯状位移预测、组合深度模型滑坡长期监测滑坡预测20可解释性强,融合遥感数据多维数据预测滑坡预测21智能组合优化,预测区间估计工程案例应用方法基础19ResNet(残差网络)解决退化、稳定深层网络图像/时序模型骨架方法基础22简约模型优于Transformer时间序列预测新方向滑坡预测领域正在从“单一网络拟合”走向“多模块协同 + 可解释 + 不确定性建模”的新时代。
2025-04-20 06:15:00
796
1
原创 【论文阅读22】-DLinear / NLinear 时间序列模型 (AAAI-2023)
尽管Transformer在提取长序列中元素之间的语义相关性方面表现出色,但其自注意力机制的排列不变性可能导致时间信息的丢失。为验证这一观点,作者提出了一种名为LTSF-Linear的简单单层线性模型,并在九个真实数据集上进行了实验。结果显示,LTSF-Linear在所有情况下均优于现有的复杂Transformer模型,且优势显著。这项发现为LTSF任务开辟了新的研究方向,并建议重新评估Transformer在其他时间序列分析任务(如异常检测)中的有效性。
2025-04-20 00:15:00
970
1
原创 【机器学习-周总结】-第4周
链接]内容涵盖结构化写作技巧(IMRaD框架);图表绘制推荐:Origin、Matplotlib、PPT美化插件、Graphviz等;Tableau Public、SciDraw、论文图复现仓库等;写作建议段落首句明确主题;先图后文,图注简洁;模型结构图/流程图建议用draw.io或LaTeX TikZ绘制。📌启示:图文并茂的表达不仅增强论文可读性,也是科研成果传播力的关键。早规划、重逻辑、注细节是写作核心。模块内容收获延伸方向技术TCN基础 + 实战博客。
2025-04-19 20:23:42
839
原创 【论文阅读21】-PSOSVM-CNN-GRU-Attention-滑坡预测(2024-12)
这篇论文主要提出并验证了一种新型的混合智能模型(PSOSVM-CNN-GRU-Attention),用于准确预测滑坡的点位移,并构建可靠的位移预测区间。通过对Baishuihe滑坡和Shuping滑坡的案例分析,展示了该模型的出色性能。
2025-04-19 11:14:04
1115
1
原创 【论文阅读20】-CNN-Attention-BiGRU-滑坡预测(2025-03)
这篇论文主要探讨了基于深度学习的滑坡位移预测模型,结合了MT-InSAR(多时相合成孔径雷达干涉测量)观测数据,提出了一种具有可解释性的滑坡位移预测方法。
2025-04-18 20:45:07
1309
1
原创 【时序预测】-TCN 实战 | 完整代码+解析
这段代码构建的是一个 时间序列预测系统,使用 TCN(Temporal Convolutional Network)模型 来预测未来的数据趋势。这个系统从数据加载、模型定义、训练、验证、测试到最终预测都一应俱全,形成了一个完整的端到端预测流程。加载所需的库,包括 PyTorch、NumPy、Pandas、绘图工具、标准化工具、命令行参数解析等。
2025-04-18 02:00:00
3270
原创 CSDN-markdown官方使用技巧(自用)
你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:撤销:Ctrl/Command + Z重做:Ctrl/Command + Y加粗:Ctrl/Command + B斜体:Ctrl/Command + I标题:Ctrl/Command + S
2025-04-16 22:24:21
1239
原创 【论文阅读19】-Res-Net (CVPR 2016)-Deep Residual Learning for Image Recognition
这篇论文提出了深度残差学习框架,通过引入残差模块解决了深层神经网络训练中的退化问题。其核心创新是将传统的层间映射 $H(x)$ 转化为残差映射 $F(x) = H(x) - x$,通过**跳跃连接(Skip Connection)** 实现恒等映射的短路机制。这种设计让网络能更高效学习微小波动(当最优解接近恒等时),同时梯度可通过残差路径直接反向传播到底层,显著缓解了梯度消失问题。该方法在ImageNet等任务中实现了突破性性能,成为深度学习的基础架构之一。
2025-04-15 21:24:02
1068
1
原创 【时序预测05】-TCN (Temporal Convolutional Networks)
时间卷积网络(Temporal Convolutional Network,TCN)是一种通用的卷积架构,专为序列建模任务设计,旨在替代传统的循环神经网络(RNN)。TCN通过融合现代卷积网络中的最佳实践,具备更强的并行计算能力和更稳定的梯度传播,在音频合成、语言建模和机器翻译等任务中表现优异。相比递归模型,TCN不仅能缓解梯度消失或爆炸等问题,还在多个任务中展现出更优的性能,因而被视为序列建模的重要候选架构。
2025-04-15 16:34:54
1724
原创 【论文阅读18】-滑坡阶梯状位移预测-CNN+Bi-GRU+Attntion(2024-07)
这篇论文主要探讨了使用深度学习模型预测滑坡位移的方法,特别是针对具有阶梯状曲线特征的滑坡位移。文章的重点在于介绍了一种新的混合模型——CNN-BiGRU-Attention,并通过与其他模型(CNN-BiGRU、CNN-BiLSTM、BiGRU-Attention、SMA-GRU、SMA-LSTM、SMA-SVM、GRU和LSTM)的比较,证明了该模型在滑坡位移预测中的优越性。
2025-04-14 08:54:59
846
1
原创 【论文阅读-学习总结】- 第3周
本周共整理阅读了6篇与滑坡位移预测相关的研究论文,内容主要聚焦于**时间序列预测方法**,涵盖了**经典深度学习模型的对比分析**、**新兴架构(如 Transformer 变体(简化): SCINet)**,以及**生成对抗网络(GAN)在样本增强与模型提升方面的应用**。这些研究从不同角度出发,丰富了滑坡预测建模的技术路径,也为构建更高效、稳健且具可解释性的预测模型提供了理论参考和方法支持。
2025-04-13 10:18:19
910
1
原创 【论文阅读17】-LRSD 滑坡 预测 | 预警(一种基于位移残差的方法)
论文主要讨论了一种基于位移残差(displacement residuals)的方法,用于识别滑坡运动中的行为变化,特别是在滑坡发生前的预警过程中。
2025-04-12 10:15:36
1005
1
原创 【论文阅读16】- SCINet | NeurIPS (2022)
简单来说,这篇论文提出了一种新的时间序列预测模型,SCINet,强调了通过分层的下采样、卷积和交互学习机制来提高模型对时间依赖性的理解,进而提高预测的准确性。
2025-04-11 15:01:40
1209
1
原创 【机器学习练习-7】- LSTM | 含完整代码+数据集
本文将带你一步步搭建一个完整的 LSTM 时间序列预测系统:从数据预处理、模型设计,到训练可视化、预测评估,全流程覆盖。我们将以一个包含两个特征变量的时序数据集为例,搭建一个自动化的训练评估流程,从数据加载、预处理、模型训练到预测评估与结果可视化,全部实现自动保存、自动记录。 适合对 LSTM、深度学习在时间序列中的应用感兴趣的读者参考和实践。
2025-04-10 19:52:42
2386
原创 【论文阅读15】- MLP, LSTM, GRU, Bi-LSTM, CNN, Conv-LSTM 滑坡预测比较
该研究测试了七种深度学习方法(MLP, LSTM, 2xLSTM, GRU, Bi-LSTM, 1D CNN, Conv-LSTM)在四个不同滑坡案例中的效果。这些滑坡在地理位置、影响因素、地质背景、时间步长和测量传感器等方面各不相同。
2025-04-10 19:24:39
821
1
原创 【机器学习练习06】- MLP | 多层感知机 +含完整代码+数据集
本项目结合 CSDN 博客《 机器学习-29】- MLP(Multilayer Perceptron)多层感知机》中关于 MLP 的基础知识,通过 TensorFlow 和 Keras 实现了一个用于时间序列预测的多层感知机(MLP)模型。本文旨在预测地质灾害中某一特征(如差异位移)的未来变化趋势。
2025-04-09 02:45:00
2696
原创 【论文阅读14】- GAN - 生成对抗网络增强 滑坡位移预测 性能
这篇文章主要探讨了如何利用生成对抗网络(GAN)来增强滑坡位移预测模型的性能,特别是在数据稀缺的情况下。文章提出了一种新型的GAN模型——RGAN-LS( (Recurrent Generative Adversarial Networks for synthesizing LandSlide)),利用递归神经网络(RNN)来捕捉多变量时间序列数据中的复杂时间相关性,并通过生成合成样本来增强训练数据。
2025-04-09 00:30:00
1491
1
原创 【机器学习-29】- MLP(Multilayer Perceptron)多层感知机
**Multilayer Perceptron (MLP)**(多层感知机)是一种前馈神经网络(Feedforward Neural Network),由多个层(层次结构)组成,通常用于监督学习任务,如分类和回归。
2025-04-08 17:08:36
1105
原创 【论文阅读13】- Attention Is All You Need
这篇论文介绍了 **Transformer** 模型,它是第一个完全基于 **自注意力机制(self-attention)** 的序列转换模型,旨在替代传统的 **循环神经网络(RNN)** 或 **卷积神经网络(CNN)** 用于序列到序列的任务,如机器翻译。
2025-04-08 00:15:00
1065
1
原创 【时间序列预测学习04】-基本流程
时间序列预测不仅仅是选择一个模型进行拟合,更是一整套系统性的工作流程,涵盖了从数据收集到模型评估与调优的每一个环节。一个科学、合理的流程可以显著提升预测的准确性与稳定性。本节为时间序列预测的基本步骤。
2025-04-07 10:37:30
448
原创 【论文阅读12】-时序预测-LiteTransNet(Transformer 简化)
这篇论文提出了 LiteTransNet,一种轻量化的 Transformer 网络,旨在提升滑坡位移预测的准确性、可解释性和计算效率。通过减少模型层数和注意力头数,LiteTransNet 保留了自注意力机制,减少了可训练参数,避免了过拟合,并提高了计算效率。尽管参数量较传统 RNN(如 LSTM 和 GRU)多,但得益于 Transformer 的并行计算能力,LiteTransNet 的训练效率提升了约 100%。
2025-04-07 10:08:01
414
1
原创 【论文阅读-学习总结】- 第二周
本周共阅读 4 篇与**时空预测与序列建模**相关的论文,其中包括 **2 篇关于 STGCN 的研究** 和 **2 篇关于 TCN 的研究**。
2025-04-06 19:44:46
39
1
原创 【时间序列预测03】-LSTM 长短期记忆网络(Long Short-Term Memory)
长短期记忆网络(Long Short-Term Memory,LSTM)是一种改进的递归神经网络(RNN)架构,专为处理和预测时间序列中的长期依赖问题而设计。相比传统RNN,LSTM在建模复杂的、非线性的时间序列数据方面更具优势。其核心创新在于引入了三个关键的“门”结构:输入门、遗忘门和输出门。这些门控机制使得LSTM能够有选择性地接收、保留或遗忘信息,从而有效地缓解了梯度消失或梯度爆炸带来的训练困难。通过精细控制信息的流动,LSTM可以在保留关键历史信息的同时,剔除无关内容,实现对序列数据中长期与短期依赖
2025-04-06 00:15:00
1598
原创 【时间序列预测02】-GRU 门控循环单元(Gated Recurrent Unit )
门控循环单元(GRU)是一种改进的循环神经网络(RNN)结构,通过引入**更新门**和**重置门**解决传统RNN的梯度消失问题,有效捕捉长期依赖关系。
2025-04-05 09:00:34
1316
原创 【时间序列预测01】-RNN-循环神经网络(Recurrent Neural Network)
RNN(循环神经网络Recurrent Neural Network)是一种专门用于处理序列数据的神经网络,它通过引入“隐藏状态”将前一步的信息传递到下一步,从而具有记忆能力,适合处理如文本、语音、时间序列等任务。与传统神经网络不同,RNN 能捕捉输入数据之间的时间或顺序关系。
2025-04-04 19:56:06
977
BP神经网络练习题数据集
2025-04-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人