BZOJ3925: [Zjoi2015]地震后的幻想乡【状压DP】

3925: [Zjoi2015]地震后的幻想乡

我们定义

f [ i ] [ j ] f[i][j] f[i][j]表示当前点集状态为 i i i,处理了前 j j j条边,不连通的方案数

g [ i ] [ j ] g[i][j] g[i][j]表示当前点集状态为 i i i,处理了前 j j j条边,连通的方案数

显然 f [ i ] [ j ] + g [ i ] [ j ] = ( c n t [ i ] j ) f[i][j]+g[i][j]=(^j_{cnt[i]}) f[i][j]+g[i][j]=(cnt[i]j), c n t [ i ] cnt[i] cnt[i]表示点集为 i i i的边的数量

考虑如何用 g g g来计算 f f f f [ S ] [ j ] = ∑ T ⊂ S g [ T ] [ k ] ∗ ( c n t [ S − T ] j − k ) f[S][j]=\sum_{T\subset S} g[T][k]*\big(^{j-k}_{cnt[S-T]}\big) f[S][j]=TSg[T][k](cnt[ST]jk)

但是我们会发现这样子会有重复,所以我们可以随便选一个点,强制 S S S T T T都包含它,这样可以做到不重不漏。

最后答案就是 1 m + 1 ∑ i = 0 m f [ U ] [ i ] ( m i ) \large\frac{1}{m+1}\sum_{i=0}^{m}\frac{f[U][i]}{(^i_m)} m+11i=0m(mi)f[U][i]

#include<cstdio>
using namespace std;
typedef long long LL;
int n,m,Siz[1<<11];bool mp[14][14];LL f[1<<11][50],g[1<<11][50],C[50][50];double Ans;
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1,x,y;i<=m;i++) scanf("%d%d",&x,&y),x--,y--,mp[x][y]=mp[y][x]=1;
	for(int i=1;i<(1<<n);i++)
	for(int j=0;j<n;j++)
	for(int k=0;k<j;k++)
	Siz[i]+=(i&(1<<j))&&(i&(1<<k))&&mp[j][k];
	C[0][0]=C[1][0]=C[1][1]=1;
	for(int i=2;i<=m;i++){
		C[i][0]=1;
		for(int j=1;j<=i;j++) C[i][j]=C[i-1][j]+C[i-1][j-1]; 
	}
	for(int i=0;i<(1<<n);i++) f[i][0]=1;
	for(int i=0;i<n;i++) g[1<<i][0]=1,f[1<<i][0]=0;
	for(int j=1;j<=m;j++)
	for(int i=1;i<(1<<n);i++){
		int p=0;for(;((i>>p)&1)==0;p++);
		for(int s=(i-1)&i;s;s=(s-1)&i)
		if(s&(1<<p))
			for(int k=0;k<=j;k++) f[i][j]+=g[s][k]*C[Siz[i^s]][j-k];
		g[i][j]=C[Siz[i]][j]-f[i][j];
	}
	for(int i=0;i<=m;i++) Ans+=1.0*f[(1<<n)-1][i]/C[m][i];
	printf("%.6lf\n",Ans/(m+1));
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值