数论13-同余方程、一次同余方程

同余方程定义:
f ( x ) = a n x n + . . . + a 1 x + a 0 f(x)=a_nx^n+...+a_1x+a_0 f(x)=anxn+...+a1x+a0为整系数多项书,将含有变量 x x x的同余式 f ( x ) = 0 ( m o d   m ) f(x)=0(mod~m) f(x)=0(mod m)称为模 m m m的同余式, n n n称为同余方程的次数。

a a a是同余方程的解,那么剩余类 k m + a km+a km+a均是同余方程的解。我们把整个剩余类看成同余方程的一个解。当 c 1 , c 2 c_1,c_2 c1,c2 m m m不同于且是同余方程的解时,我们把它看作同余方程不同的解。

一次同余方程
形式: a x = b ( m o d   m ) ax=b(mod~m) ax=b(mod m)
定理:一次同余方程 a x = b ( m o d   m ) ax=b(mod~m) ax=b(mod m)有解的充要条件是 g c d ( a , m ) ∣ b gcd(a,m)|b gcd(a,m)b,且解数为 g c d ( a , m ) gcd(a,m) gcd(a,m)
证:
必要性:设 g c d ( a , m ) = r gcd(a,m)=r gcd(a,m)=r。因为一次同余方程有解,所以 a x 0 = k m + b → b = a x 0 − k m ax_0=km+b\rightarrow b=ax_0-km ax0=km+bb=ax0km r ∣ a , r ∣ m → r ∣ b r|a,r|m\rightarrow r|b ra,rmrb
充分性:因为 g c d ( a , m ) ∣ b gcd(a,m)|b gcd(a,m)b,所以令 a ′ = a g c d ( a , m ) , b ′ = b g c d ( a , m ) , m ′ = m g c d ( a , m ) a'=\frac{a}{gcd(a,m)},b'=\frac{b}{gcd(a,m)},m'=\frac{m}{gcd(a,m)} a=gcd(a,m)a,b=gcd(a,m)b,m=gcd(a,m)m
考虑同余方程 a ′ x = 1 ( m o d   m ′ ) a'x=1(mod~m') ax=1(mod m),因为 g c d ( a ′ , m ′ ) = 1 gcd(a',m')=1 gcd(a,m)=1,所以存在唯一逆元使得 a ′ x 0 = 1 ( m o d   m ′ ) a'x_0=1(mod~m') ax0=1(mod m)。因此 a ′ x = b ′ ( m o d   m ′ ) a'x=b'(mod~m') ax=b(mod m)存在唯一解 x = x 0 b ′ ( m o d   m ′ ) x=x_0b'(mod~m') x=x0b(mod m)
a ′ x 0 b ′ = k 1 m ′ + b ′ a'x_0b'=k_1m'+b' ax0b=k1m+b左右同乘 r r r得到:
a x 0 b ′ − b = r a ′ x 0 b ′ − b = r ( k 1 m ′ + b ′ ) − b = r k 1 m ′ + r b ′ − b = k 1 m ax_0b'-b=ra'x_0b'-b=r(k_1m'+b')-b=rk_1m'+rb'-b=k_1m ax0bb=rax0bb=r(k1m+b)b=rk1m+rbb=k1m
所以 m ∣ a x 0 b ′ − b m|ax_0b'-b max0bb,即 a ( x 0 b ′ ) = b ( m o d   m ) a(x_0b')=b(mod~m) a(x0b)=b(mod m),所以 x = x 0 b ′ ( m o d   m ) x=x_0b'(mod~m) x=x0b(mod m)是同余方程特解。

考虑同余方程解的个数:
x = x 0 b ′ ( m o d   m ′ ) x=x_0b'(mod~m') x=x0b(mod m)可得 x = x 0 b ′ + k m ′ , k = 0 , − 1 , 1 , − 2 , 2 , . . . . x=x_0b'+km',k=0,-1,1,-2,2,.... x=x0b+km,k=0,1,1,2,2,....
m m m可写为 x = x 0 b ′ + k m ′ ( m o d   m ) , k = 0 , 1 , 2... , g c d ( a , m ) − 1 x=x_0b'+km'(mod~m),k=0,1,2...,gcd(a,m)-1 x=x0b+km(mod m),k=0,1,2...,gcd(a,m)1(因为若 k = g c d ( a , m ) + t , x = x 0 b ′ + g c d ( a , m ) m ′ + t m ′ = x 0 b ′ + m + t m ′ ( m o d   m ) = x 0 b ′ + t m ′ ( m o d   m ) , t < g c d ( a , m ) k=gcd(a,m)+t,x=x_0b'+gcd(a,m)m'+tm'=x_0b'+m+tm'(mod~m)=x_0b'+tm'(mod~m),t<gcd(a,m) k=gcd(a,m)+t,x=x0b+gcd(a,m)m+tm=x0b+m+tm(mod m)=x0b+tm(mod m),t<gcd(a,m)),所以解数为 g c d ( a , m ) gcd(a,m) gcd(a,m)

  • 23
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
同余方程数论中常见的问题,欧拉定理是求解同余方程的一种重要方法。假设a、m是正整数,且它们互质,即gcd(a,m)=1,则欧拉定理表示:a^(φ(m)) ≡ 1 (mod m),其中φ(m)表示小于等于m的正整数中与m互质的数的个数(欧拉函数)。这个公式可以用来求解同余方程a^x ≡ b (mod m)。 具体步骤如下: 1. 求出φ(m)的值。如果m是质数,则φ(m)=m-1;如果m不是质数,则φ(m)=m×(1-1/p1)×(1-1/p2)×...×(1-1/pn),其中p1、p2、...、pn是m的所有质因数。 2. 判断a和m是否互质,如果不互质则无解,如果互质则继续。 3. 利用欧拉定理,求出a^(φ(m))的余数r。 4. 如果b不等于r,则无解;如果b等于r,则设x=k×φ(m)+j,其中k为非负整数,j为0到φ(m)-1之间的整数。则a^x ≡ a^(k×φ(m))×a^j ≡ (a^(φ(m)))^k × a^j ≡ 1^k × b ≡ b (mod m)。 因此,同余方程a^x ≡ b (mod m)的解为x=k×φ(m)+j,其中k为非负整数,j为0到φ(m)-1之间的整数。 例如,假设要解同余方程2^x ≡ 5 (mod 17),则φ(17)=16,2和17互质,因此2^(φ(17)) ≡ 1 (mod 17),即2^16 ≡ 1 (mod 17)。因此,2^x ≡ 5 (mod 17)的解为x=k×φ(17)+j,其中k为非负整数,j为0到15之间的整数。将2^x在模17意义下的余数列出来如下: 2^0 mod 17 = 1 2^1 mod 17 = 2 2^2 mod 17 = 4 2^3 mod 17 = 8 2^4 mod 17 = 16 2^5 mod 17 = 13 2^6 mod 17 = 7 2^7 mod 17 = 14 2^8 mod 17 = 9 2^9 mod 17 = 18 ≡ 1 (mod 17) 2^10 mod 17 = 2×2^9 ≡ 2 (mod 17) 2^11 mod 17 = 4×2^9 ≡ 4 (mod 17) 2^12 mod 17 = 8×2^9 ≡ 8 (mod 17) 2^13 mod 17 = 16×2^9 ≡ 16 (mod 17) 2^14 mod 17 = 13×2^9 ≡ 13 (mod 17) 2^15 mod 17 = 7×2^9 ≡ 7 (mod 17) 因此,2^x ≡ 5 (mod 17)的解为x=k×φ(17)+j,其中k为非负整数,j=14,因为2^14 ≡ 13 (mod 17)。因此,2^x ≡ 5 (mod 17)的解为x=16k+14,其中k为非负整数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅逼码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值