ACM - 数论 | 二次同余方程(质数模)

二次同余方程

形如 X 2 ≡ n X^2≡n X2n ( m o d (mod (mod p ) p) p) p p p 为质数)形式的方程,我们称之为质数模的二次同余方程 。下面将详细阐述二次同余方程是否有解的判定,并且给出解的形式,和代码求解。

定理

费马小定理

对于一个质数 p p p 和一个数 a a a a a a 不为 p p p 的倍数)有 a p a^p ap − ^- 1 ≡ 1 ^1≡1 11 ( m o d (mod (mod p ) p) p) .

证明与结论

结论一

n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ^2 2 ≡ ≡ ± 1 ±1 ±1 ( m o d (mod (mod p ) p) p)
当值为 − 1 -1 1 时,实际 n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 = p − 1 ^2=p-1 2=p1 .

证明:
由于 n p n^p np − ^- 1 ≡ 1 ^1≡1 11 ( m o d (mod (mod p ) p) p) .

n p n^p np − ^- 1 − 1 ≡ 0 ^1-1≡0 110 ( m o d (mod (mod p ) p) p) .

( ( ( n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ^2 2 + 1 ) ( +1)( +1)( n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ^2 2 − 1 ) -1) 1) ≡ 0 ≡0 0 ( m o d (mod (mod p ) p) p) .

n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ^2 2 ≡ ≡ ± 1 ±1 ±1 ( m o d (mod (mod p ) p) p) .

结论二(欧拉判别条件)

(1)当 n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ≡ ^2≡ 2 + 1 +1 +1 ( m o d (mod (mod p ) p) p) 时,二次同余方程有解 ;

(2)当 n ( n^( n( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ≡ ^2≡ 2 − 1 -1 1 ( m o d (mod (mod p ) p) p) 时,二次同余方程无解 。

结论三

a a a 满足 w = a 2 − n w= a^2-n w=a2n 使 X 2 ≡ w ( m o d X^2≡w (mod X2w(mod p ) p) p) 无解,那么 ( a + s q r t ( w ) ) (a+sqrt(w)) (a+sqrt(w)) ( ^( ( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ^2 2 即为二次同余方程的解 .

证明:
由于 a p a^p ap − ^- 1 ≡ 1 ^1≡1 11 (mod p ) p) p) a p ≡ a a^p≡a apa ( m o d (mod (mod p ) p) p) .

再由于 p p p 为质数,故 C p i ≡ 0 C^i_p≡0 Cpi0 ( m o d (mod (mod p ) p) p). 同时由条件可得 w w w ( ^( ( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ≡ − 1 ^2≡-1 21 ( m o d (mod (mod p ) p) p) .

故 式子 ( a + s q r t ( w ) ) p (a+sqrt(w))^p (a+sqrt(w))p 经过展开和化简可以得到等式 ( a + s q r t ( w ) ) p ≡ a − s q r t ( w ) (a+sqrt(w))^p≡a-sqrt(w) (a+sqrt(w))pasqrt(w) ( m o d (mod (mod p ) p) p) .

将式子两边同乘以 ( a + s q r t ( w ) ) (a + sqrt(w)) (a+sqrt(w)) 可得 ( a + s q r t ( w ) ) p (a+sqrt(w))^p (a+sqrt(w))p + ^+ + 1 ≡ a 2 − w ≡ n ^1≡a^2-w≡n 1a2wn ( m o d (mod (mod p ) p) p) .

X 2 ≡ X^2≡ X2 ( a + s q r t ( w ) ) p (a+sqrt(w))^p (a+sqrt(w))p + ^+ + 1 ^1 1 X ≡ X≡ X ( a + s q r t ( w ) ) (a+sqrt(w)) (a+sqrt(w)) ( ^( ( p ^p p − ^- 1 ^1 1 ) ^) ) / ^/ / 2 ^2 2 .

代码

说明:
(1) 在代码中, a a a 利用随机函数获取,由于获得可行的 a a a 的几率较高,所以在获取 a a a 的过程中不会耗时过长。

(2) 在处理 ( a + s q r t ( w ) ) n (a+sqrt(w))^n (a+sqrt(w))n 的过程中运用到了二次域,其实便是记录 s q r t ( w ) sqrt(w) sqrt(w) 的系数来进行幂运算,由于上述的推导,可知最后 s q r t ( w ) sqrt(w) sqrt(w) 的系数一定会变为 0 0 0 , 二次域快速幂只需将普通的快速幂稍作改变即可实现 。

备注: 有些时候 X X X 可能是一个式子,最终求解未知数 x x x 的时候可能会遇上除法,这需要看成分数,利用逆元来解决,而不是直接用除法来解。

ll n, w, ans;
int mod = 1e9 + 7;

struct Qd { //二次域
	ll p, d;
	Qd mul(Qd a, Qd b) {
		Qd ans;
		ans.p = ((a.p*b.p) % mod + (a.d*b.d) % mod*w % mod) % mod;
		ans.d = ((a.p*b.d) % mod + (a.d*b.p) % mod) % mod;
		return ans;
	}
	Qd qmul(Qd n, ll m) {
		Qd ans;
		ans.p = 1; ans.d = 0;
		while (m) {
			if (m & 1) {
				ans = ans.mul(ans, n);
			}
			m >>= 1;
			n = n.mul(n, n);
		}
		return ans;
	}
};

ll qpow(ll n, ll m, int mod) { //快速幂
	ll res = 1;
	while (m) {
		if (m & 1) {
			res = (res*n) % mod;
		}
		m >>= 1;
		n = (n*n) % mod;
	}
	return res;
}

ll getans() { //求解 X
	ll a, t;
	do {
		a = rand() % mod;
		t = a*a - n;
		w = (t + mod) % mod;
	} while (qpow(w, (mod - 1) / 2, mod) + 1 != mod);
	Qd tmp;
	tmp.p = a; tmp.d = 1;
	Qd ans = tmp.qmul(tmp, (mod + 1) / 2);
	return ans.p;
}

int main() {
	scanf("%lld", &n);
	if (qpow(n, (mod - 1) / 2, mod) + 1 == mod) {
		cout << "No solution";
	}
	else {
		ans = getans();
		printf("%lld",ans);
	}
	return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值