hdu 6638 2019多校训练六 1005 Snowy Smile

把点的y轴值离散化一下,假如离散完有Y个数字,那从1到Y,假设每一个数值当成矩形的下边界,然后在开一个循环,当下边界为1时,上边界为1 . 2 . 3 . 4 … Y,假设下边界为2时,上边界为 2 . 3 . 4 … Y。以此类推,每次对于上下边界的假设用线段树求一次最大字段和,建树用的值就是在上下边界内在同一个y轴上的x的和,共有X个,离散化x轴的值可得X,然后记录最大值。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <algorithm>
typedef long long ll;
using namespace std;
const ll mod=998244353;
const int maxn=1e5+100;

int sy[maxn],sx[maxn];

struct node
{
    ll ls,rs,s,maxs;
}ans[maxn];

struct point
{
    int x,y;
    ll w;
}wq[maxn];

int cmp(point a,point b)
{
    return a.y<b.y;
}

void pushup(int l,int r,int rt)
{
    ans[rt].ls=max(ans[rt<<1].ls,ans[rt<<1].s+ans[rt<<1|1].ls);
    ans[rt].rs=max(ans[rt<<1|1].rs,ans[rt<<1|1].s+ans[rt<<1].rs);
    ans[rt].s=ans[rt<<1].s+ans[rt<<1|1].s;
    ans[rt].maxs=max(ans[rt<<1].rs+ans[rt<<1|1].ls,max(ans[rt<<1].maxs,ans[rt<<1|1].maxs));
}

void build(int l,int r,int rt)
{
    ans[rt].ls=ans[rt].rs=ans[rt].s=ans[rt].maxs=0;
    if(l==r)return;
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);
    build(mid+1,r,rt<<1|1);
}

void update(int L,int R,int l,int r,int rt,int x)
{
    if(L<=l && r<=R)
    {
        ans[rt].ls=ans[rt].rs=ans[rt].s=ans[rt].maxs=ans[rt].s+x;
        return;
    }
    int mid=(l+r)>>1;
    if(L<=mid)update(L,R,l,mid,rt<<1,x);
    else update(L,R,mid+1,r,rt<<1|1,x);
    pushup(l,r,rt);
}

int main() {
//    freopen("in.txt","r",stdin);
//    freopen("out.txt","w",stdout);
    int t;
    scanf("%d",&t);
    while(t--){
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d%d%lld",&wq[i].x,&wq[i].y,&wq[i].w);
            sy[i]=wq[i].y;
            sx[i]=wq[i].x;
        }
        sort(wq+1,wq+1+n,cmp);
        sort(sy+1,sy+1+n);
        int toty=unique(sy+1,sy+1+n)-sy-1;
        sort(sx+1,sx+1+n);
        int totx=unique(sx+1,sx+1+n)-sx;
        int pi=1;
        ll maxans=0;
        for(int i=1;i<=toty;i++){
            build(1,totx,1);
            int pj=pi,flag=1;
            for(int j=i;j<=toty;j++){
                do{
                    int pos=lower_bound(sx+1,sx+totx,wq[pj].x)-sx;
                    update(pos,pos,1,totx,1,wq[pj].w);
                    pj++;
                    if(flag && wq[pj].y!=wq[pj-1].y && pj<=n)
                    {
                        pi=pj,flag=0;
                    }
                }while(pj<=n && wq[pj].y==wq[pj-1].y);
                maxans=max(maxans,ans[1].maxs);
            }
        }
        printf("%lld\n",maxans);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值