为什么要像经济学家那样思考

为什么要像经济学家那样思考

1.1 为什么要像经济学家那样思考(一):经济学中的帕累托效率
对某些人没有坏处,但对其他人有好处,就是说这件事有帕累托改进的余地,我感觉就是,在不产生坏影像的前提下,还有提升空间,其仍有帕累托改进
在这里插入图片描述

先效率后公平

先富带后富

为效率而公平

为城市建设者提供子女本地教育

为公平而公平

帮扶弱势群体

一种状态,没有帕累托改进的余地,我们称这种状态为帕累托有效

习题

为什么要像经济学家那样思考(一):经济学中的帕累托效率 待做
1
【单选题】(A)是市场机制的灵魂。
A 自由交易
B 供给关系
C 竞争机制
D 政府调控
2
【单选题】在下列选项中,关于市场机制,说法错误的是(C)。
A 市场机制允许市场主体自发的进行交易
B 当市场机制受到政策限制时,帕累托改进可能会没有效率
C 帕累托效率只能存在于市场竞争机制中
D 市场机制允许潜在的帕累托改进
3
【多选题】从经济学角度看,以下哪种说法是错误的?(A、B、D)
A 为了保护耕地,必须限制土地农转非指标的跨地区转移。
B 让农民工子弟在城市接受教育,对城市人口没有好处,只会牺牲城市人口的利益。
C 为了促进公平而实施的政策也可以同时是有利于提高效率的。
D 用政策手段使区域内的小企业离开,政府就能够促成本地的产业升级。
4
【判断题】效率与公平是可以兼顾的。(✔)

1.2 为什么要像经济学家那样思考(二):经济学原理与人生智慧

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

存在市场的时候,允许自由交易的时候,才会用价值来衡量

在这里插入图片描述
在这里插入图片描述
分工提高效率
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
应该由市场和人去选择什么样的人才应该留在城市,政府不可人为干预
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

习题

从经济学角度看,往往是因为(D),人们不能实现理想的目标。
A、总是做出不正确的选择
B、有时过于注重长远的利益
C、过于情绪化
D、面临各种无法突破的约束
我的答案:A 得分: 0.0分
2
【单选题】因为(),所以钻石的价格远比水高。
A、钻石更稀缺
B、水的开采非常简易
C、人们更需要钻石
D、钻石对人类的用处更大
我的答案:A 得分: 20.0分
3
【判断题】在现实生活中,人们往往面临不同的约束条件。()
我的答案:√ 得分: 20.0分
4
【判断题】价格由供给与需求各自决定。()
我的答案:× 得分: 20.0分
5
【判断题】在长期情况下,往往更可能出现人与人无法合作的情形。(X)
我的答案:√ 得分: 0

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值