均方误差损失函数(MSE,mean squared error)

推荐一下:深度学习AI-计算机视觉(CV)-整体解决方案课件(Yolo+Flask+Vue+Waitress+Nginx)

视频教程:https://www.bilibili.com/video/BV19h4y1874T/?spm_id_from=333.999.0.0

均方误差损失函数(MSE,mean squared error)

回归问题解决的是对具体数值的预测,比如房价预测、销量预测等等,解决回归问题的神经网络一般只有一个输出节点,这个节点的输出值就是预测值。本文主要介绍回归问题下的损失函数——均方误差(MSE,mean squared error)。
公式如下:
在这里插入图片描述

Pyorch实现的MSE

import torch
import numpy as np

loss_fn = torch.nn.MSELoss(reduce=False, size_average=False)

a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,5]])

input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))

loss = loss_fn(input.float(), target.float())
print(input.float())
print(target.float())

print(loss)

在这里插入图片描述

a=np.array([[1,2],[3,4]])
b=np.array([[2,3],[4,6]])

loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)

input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))

loss = loss_fn(input.float(), target.float())
print(input.float())
print(target.float())
print(loss)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值