速算技巧之平方

速算技巧之平方

一 11-19进行速算

技巧一

对于 11~19 的平方,可以使用一个简单的公式进行快速计算:

( 1 A ) 2 = ( 1 A + A ) + A 2 (1A)^2=(1A+A)+A^2 (1A)2=(1A+A)+A2

(1A+A)表示前置位
A^2表示后置位,逢10进位

其中:

  • 1 1 1 是 11~19 之间的数 的1
  • A A A,是11~19 之间的数 的1,2,3,4,5,6,7,8,9

案例 1: 1 2 2 12^2 122

  • A = 2 A = 2 A=2
  • 计算 前置位 ( 12 + 2 ) = 14 (12 + 2) = 14 (12+2)=14
  • 计算 后置位 2 2 = 4 2^2 = 4 22=4
  • 答案: 1 2 2 = 144 12^2 = 144 122=144

案例 2: 1 4 2 14^2 142

  • $ A = 4 $
  • 计算 前置位 ( 14 + 4 ) = 18 (14 + 4) = 18 (14+4)=18
  • 计算 后置位 4 2 = 16 4^2 = 16 42=16(逢10进1)
  • 答案: 1 4 2 = 196 14^2 = 196 142=196

案例 3: 1 6 2 16^2 162

  • $ A = 6 $
  • 计算 前置位 ( 16 + 6 ) = 22 (16 + 6) = 22 (16+6)=22
  • 计算 后置位 6 2 = 36 6^2 = 36 62=36
  • 答案: 1 6 2 = 256 16^2 = 256 162=256

案例 4: 1 8 2 18^2 182

  • $ A = 8 $
  • 计算 前置位 ( 18 + 8 ) = 26 (18 + 8) = 26 (18+8)=26
  • 计算 后置位 8 2 = 64 8^2 = 64 82=64
  • 答案: 1 8 2 = 324 18^2 = 324 182=324

案例 5: 1 9 2 19^2 192

  • $ A = 9 $
  • 计算 前置位 ( 19 + 9 ) = 28 (19 + 9) = 28 (19+9)=28
  • 计算 后置位 9 2 = 81 9^2 = 81 92=81
  • 答案: 1 9 2 = 361 19^2 = 361 192=361

总结

  1. 前置位 计算: ( 1 A + A ) (1A + A) (1A+A)
  2. 后置位 计算: A 2 A^2 A2,如果后置位 ≥10,则进1
  3. 组合得到最终结果

技巧二

11~19 的平方速算公式

对于 11~19 的平方,可以使用一个简单的公式进行快速计算:

N 2 = ( N − D ) × ( N + D ) + D 2 N^2 = (N - D) \times (N + D) + D^2 N2=(ND)×(N+D)+D2

其中:

  • N N N 是 11~19 之间的数
  • D = N − 10 D = N - 10 D=N10,即该数比 10 大多少

更简洁的写法是:

N 2 = ( N + D ) × 10 + D 2 N^2 = (N + D) \times 10 + D^2 N2=(N+D)×10+D2

即:

  1. 先计算 ( N + D ) × 10 (N + D) \times 10 (N+D)×10
  2. 再加上 D 2 D^2 D2

速算案例

例 1: 1 1 2 11^2 112
  • D = 11 − 10 = 1 D = 11 - 10 = 1 D=1110=1
  • 计算 ( 11 + 1 ) × 10 = 12 × 10 = 120 (11 + 1) \times 10 = 12 \times 10 = 120 (11+1)×10=12×10=120
  • 加上 1 2 = 1 1^2 = 1 12=1
  • 结果: 1 1 2 = 121 11^2 = 121 112=121

例 2: 1 3 2 13^2 132
  • D = 13 − 10 = 3 D = 13 - 10 = 3 D=1310=3
  • 计算 ( 13 + 3 ) × 10 = 16 × 10 = 160 (13 + 3) \times 10 = 16 \times 10 = 160 (13+3)×10=16×10=160
  • 加上 3 2 = 9 3^2 = 9 32=9
  • 结果: 1 3 2 = 169 13^2 = 169 132=169

例 3: 1 7 2 17^2 172
  • D = 17 − 10 = 7 D = 17 - 10 = 7 D=1710=7
  • 计算 ( 17 + 7 ) × 10 = 24 × 10 = 240 (17 + 7) \times 10 = 24 \times 10 = 240 (17+7)×10=24×10=240
  • 加上 7 2 = 49 7^2 = 49 72=49
  • 结果: 1 7 2 = 289 17^2 = 289 172=289

例 4: 1 9 2 19^2 192
  • D = 19 − 10 = 9 D = 19 - 10 = 9 D=1910=9
  • 计算 ( 19 + 9 ) × 10 = 28 × 10 = 280 (19 + 9) \times 10 = 28 \times 10 = 280 (19+9)×10=28×10=280
  • 加上 9 2 = 81 9^2 = 81 92=81
  • 结果: 1 9 2 = 361 19^2 = 361 192=361

总结公式:

N 2 = ( N + D ) × 10 + D 2 N^2 = (N + D) \times 10 + D^2 N2=(N+D)×10+D2


二 21-29进行速算

对于 21~29 的平方,可以使用一个简单的公式进行快速计算:

( 2 A ) 2 = 2 ( 2 A + A ) + A 2 (2A)^2=2(2A+A)+A^2 (2A)2=2(2A+A)+A2

2(2A+A)表示前置位
A^2表示后置位,逢10进位

其中:

  • 2 2 2 是 21~29 之间的数 的2
  • A A A,是21~29 之间的数 的1,2,3,4,5,6,7,8,9

案例 1: 2 2 2 22^2 222

  • A = 2 A = 2 A=2
  • 计算 前置位 2 ( 22 + 2 ) = 2 × 24 = 48 2(22 + 2) = 2 \times 24 = 48 2(22+2)=2×24=48
  • 计算 后置位 2 2 = 4 2^2 = 4 22=4
  • 答案: 2 2 2 = 484 22^2 = 484 222=484

案例 2: 2 4 2 24^2 242

  • A = 4 A = 4 A=4
  • 计算 前置位 2 ( 24 + 4 ) = 2 × 28 = 56 2(24 + 4) = 2 \times 28 = 56 2(24+4)=2×28=56
  • 计算 后置位 4 2 = 16 4^2 = 16 42=16(逢10进1)
  • 答案: 2 4 2 = 576 24^2 = 576 242=576

案例 3: 2 6 2 26^2 262

  • A = 6 A = 6 A=6
  • 计算 前置位 2 ( 26 + 6 ) = 2 × 32 = 64 2(26 + 6) = 2 \times 32 = 64 2(26+6)=2×32=64
  • 计算 后置位 6 2 = 36 6^2 = 36 62=36
  • 答案: 2 6 2 = 676 26^2 = 676 262=676

案例 4: 2 8 2 28^2 282

  • A = 8 A = 8 A=8
  • 计算 前置位 2 ( 28 + 8 ) = 2 × 36 = 72 2(28 + 8) = 2 \times 36 = 72 2(28+8)=2×36=72
  • 计算 后置位 8 2 = 64 8^2 = 64 82=64
  • 答案: 2 8 2 = 784 28^2 = 784 282=784

案例 5: 2 9 2 29^2 292

  • A = 9 A = 9 A=9
  • 计算 前置位 2 ( 29 + 9 ) = 2 × 38 = 76 2(29 + 9) = 2 \times 38 = 76 2(29+9)=2×38=76
  • 计算 后置位 9 2 = 81 9^2 = 81 92=81
  • 答案: 2 9 2 = 841 29^2 = 841 292=841

总结

  1. 前置位 计算: 2 ( 2 A + A ) 2(2A + A) 2(2A+A)
  2. 后置位 计算: A 2 A^2 A2,如果后置位 ≥10,则进1
  3. 组合得到最终结果

三 31-39进行速算

对于 31~39 的平方,可以使用一个简单的公式进行快速计算:

( 3 A ) 2 = 3 ( 3 A + A ) + A 2 (3A)^2=3(3A+A)+A^2 (3A)2=3(3A+A)+A2

3(3A+A)表示前置位
A^2表示后置位,逢10进位

其中:

  • 3 3 3 是 31~39 之间的数 的3
  • A A A,是31~39 之间的数 的1,2,3,4,5,6,7,8,9

案例 1: 3 2 2 32^2 322

  • A = 2 A = 2 A=2
  • 计算 前置位 3 ( 32 + 2 ) = 3 × 34 = 102 3(32 + 2) = 3 \times 34 = 102 3(32+2)=3×34=102
  • 计算 后置位 2 2 = 4 2^2 = 4 22=4
  • 答案: 3 2 2 = 1024 32^2 = 1024 322=1024

案例 2: 3 4 2 34^2 342

  • A = 4 A = 4 A=4
  • 计算 前置位 3 ( 34 + 4 ) = 3 × 38 = 114 3(34 + 4) = 3 \times 38 = 114 3(34+4)=3×38=114
  • 计算 后置位 4 2 = 16 4^2 = 16 42=16(逢10进1)
  • 答案: 3 4 2 = 1156 34^2 = 1156 342=1156

案例 3: 3 6 2 36^2 362

  • A = 6 A = 6 A=6
  • 计算 前置位 3 ( 36 + 6 ) = 3 × 42 = 126 3(36 + 6) = 3 \times 42 = 126 3(36+6)=3×42=126
  • 计算 后置位 6 2 = 36 6^2 = 36 62=36
  • 答案: 3 6 2 = 1296 36^2 = 1296 362=1296

案例 4: 3 8 2 38^2 382

  • A = 8 A = 8 A=8
  • 计算 前置位 3 ( 38 + 8 ) = 3 × 46 = 138 3(38 + 8) = 3 \times 46 = 138 3(38+8)=3×46=138
  • 计算 后置位 8 2 = 64 8^2 = 64 82=64
  • 答案: 3 8 2 = 1444 38^2 = 1444 382=1444

案例 5: 3 9 2 39^2 392

  • A = 9 A = 9 A=9
  • 计算 前置位 3 ( 39 + 9 ) = 3 × 48 = 144 3(39 + 9) = 3 \times 48 = 144 3(39+9)=3×48=144
  • 计算 后置位 9 2 = 81 9^2 = 81 92=81
  • 答案: 3 9 2 = 1521 39^2 = 1521 392=1521

总结

  1. 前置位 计算: 3 ( 3 A + A ) 3(3A + A) 3(3A+A)
  2. 后置位 计算: A 2 A^2 A2,如果后置位 ≥10,则进1
  3. 组合得到最终结果

四 任意两位数进行平方速算

( A B ) 2 = A 2 + 2 A B + B 2 (AB)^2=A^2+2AB+B^2 (AB)2=A2+2AB+B2

A^2表示前置位
2AB表示中置位,逢10进位
B^2表示后置位,逢10进位


案例 1: 2 3 2 23^2 232

  • A = 2,B = 3
  • 前置位 A 2 = 2 2 = 4 A^2 = 2^2 = 4 A2=22=4
  • 中置位 2 A B = 2 × 2 × 3 = 12 2AB = 2 \times 2 \times 3 = 12 2AB=2×2×3=12(逢10进1)
  • 后置位 B 2 = 3 2 = 9 B^2 = 3^2 = 9 B2=32=9
  • 答案: 2 3 2 = 529 23^2 = 529 232=529

案例 2: 4 7 2 47^2 472

  • A = 4,B = 7
  • 前置位 A 2 = 4 2 = 16 A^2 = 4^2 = 16 A2=42=16
  • 中置位 2 A B = 2 × 4 × 7 = 56 2AB = 2 \times 4 \times 7 = 56 2AB=2×4×7=56(逢10进5)
  • 后置位 B 2 = 7 2 = 49 B^2 = 7^2 = 49 B2=72=49(逢10进4)
  • 计算
    - 16 + 5 = 21 16 + 5 = 21 16+5=21
    - 56 + 4 = 60 56 + 4 = 60 56+4=60
    • 答案: 4 7 2 = 2209 47^2 = 2209 472=2209

案例 3: 5 6 2 56^2 562

  • A = 5,B = 6
  • 前置位 A 2 = 5 2 = 25 A^2 = 5^2 = 25 A2=52=25
  • 中置位 2 A B = 2 × 5 × 6 = 60 2AB = 2 \times 5 \times 6 = 60 2AB=2×5×6=60(逢10进6)
  • 后置位 B 2 = 6 2 = 36 B^2 = 6^2 = 36 B2=62=36(逢10进3)
  • 计算
    - 25 + 6 = 31 25 + 6 = 31 25+6=31
    - 60 + 3 = 63 60 + 3 = 63 60+3=63
    • 答案: 5 6 2 = 3136 56^2 = 3136 562=3136

案例 4: 7 1 2 71^2 712

  • A = 7,B = 1
  • 前置位 A 2 = 7 2 = 49 A^2 = 7^2 = 49 A2=72=49
  • 中置位 2 A B = 2 × 7 × 1 = 14 2AB = 2 \times 7 \times 1 = 14 2AB=2×7×1=14(逢10进1)
  • 后置位 B 2 = 1 2 = 1 B^2 = 1^2 = 1 B2=12=1
  • 计算
    - 49 + 1 = 50 49 + 1 = 50 49+1=50
    • 答案: 7 1 2 = 5041 71^2 = 5041 712=5041

案例 5: 8 9 2 89^2 892

  • A = 8,B = 9
  • 前置位 A 2 = 8 2 = 64 A^2 = 8^2 = 64 A2=82=64
  • 中置位 2 A B = 2 × 8 × 9 = 144 2AB = 2 \times 8 \times 9 = 144 2AB=2×8×9=144(逢10进14)
  • 后置位 B 2 = 9 2 = 81 B^2 = 9^2 = 81 B2=92=81(逢10进8)
  • 计算
    - 64 + 14 = 78 64 + 14 = 78 64+14=78
    - 144 + 8 = 152 144 + 8 = 152 144+8=152
    • 答案: 8 9 2 = 7921 89^2 = 7921 892=7921

总结

  1. 前置位 计算: A 2 A^2 A2
  2. 中置位 计算: 2 A B 2AB 2AB,如果 ≥10,则进位
  3. 后置位 计算: B 2 B^2 B2,如果 ≥10,则进位
  4. 合并结果

五 尾数为5的二、三位数平方速算

六 尾数为6的二位数平方速算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值