速算技巧之分数

速算技巧之分数

(1)交叉相乘法速算比较分数大小

如果第一个分数的分子与第二分数分母相乘的积大于第一个分数的分母和第二个分数分子的积,则第一个分数比较大,反之第二个分数比较大

交叉相乘法速算比较分数大小是通过对比两个分数的交叉相乘的积来判断大小,以下是几个使用该技巧进行的比较分数大小的案例,适用于教学:

案例 1:比较 3 4 \frac{3}{4} 43 5 6 \frac{5}{6} 65

  1. 交叉相乘

    • 第一个分数的分子与第二个分数的分母相乘: 3 × 6 = 18 3 \times 6 = 18 3×6=18
    • 第一个分数的分母与第二个分数的分子相乘: 4 × 5 = 20 4 \times 5 = 20 4×5=20
  2. 比较结果

    • 18 < 20 18 < 20 18<20
    • 所以, 3 4 < 5 6 \frac{3}{4} < \frac{5}{6} 43<65

结论: 5 6 \frac{5}{6} 65 3 4 \frac{3}{4} 43大。


案例 2:比较 7 8 \frac{7}{8} 87 3 4 \frac{3}{4} 43

  1. 交叉相乘

    • 第一个分数的分子与第二个分数的分母相乘: 7 × 4 = 28 7 \times 4 = 28 7×4=28
    • 第一个分数的分母与第二个分数的分子相乘: 8 × 3 = 24 8 \times 3 = 24 8×3=24
  2. 比较结果

    • 28 > 24 28 > 24 28>24
    • 所以, 7 8 > 3 4 \frac{7}{8} > \frac{3}{4} 87>43

结论: 7 8 \frac{7}{8} 87 3 4 \frac{3}{4} 43大。


案例 3:比较 2 3 \frac{2}{3} 32 5 8 \frac{5}{8} 85

  1. 交叉相乘

    • 第一个分数的分子与第二个分数的分母相乘: 2 × 8 = 16 2 \times 8 = 16 2×8=16
    • 第一个分数的分母与第二个分数的分子相乘: 3 × 5 = 15 3 \times 5 = 15 3×5=15
  2. 比较结果

    • 16 > 15 16 > 15 16>15
    • 所以, 2 3 > 5 8 \frac{2}{3} > \frac{5}{8} 32>85

结论: 2 3 \frac{2}{3} 32 5 8 \frac{5}{8} 85大。


案例 4:比较 9 10 \frac{9}{10} 109 7 8 \frac{7}{8} 87

  1. 交叉相乘

    • 第一个分数的分子与第二个分数的分母相乘: 9 × 8 = 72 9 \times 8 = 72 9×8=72
    • 第一个分数的分母与第二个分数的分子相乘: 10 × 7 = 70 10 \times 7 = 70 10×7=70
  2. 比较结果

    • 72 > 70 72 > 70 72>70
    • 所以, 9 10 > 7 8 \frac{9}{10} > \frac{7}{8} 109>87

结论: 9 10 \frac{9}{10} 109 7 8 \frac{7}{8} 87大。


案例 5:比较 5 6 \frac{5}{6} 65 4 5 \frac{4}{5} 54

  1. 交叉相乘

    • 第一个分数的分子与第二个分数的分母相乘: 5 × 5 = 25 5 \times 5 = 25 5×5=25
    • 第一个分数的分母与第二个分数的分子相乘: 6 × 4 = 24 6 \times 4 = 24 6×4=24
  2. 比较结果

    • 25 > 24 25 > 24 25>24
    • 所以, 5 6 > 4 5 \frac{5}{6} > \frac{4}{5} 65>54

结论: 5 6 \frac{5}{6} 65 4 5 \frac{4}{5} 54大。


总结

  1. 对于两个分数 a b \frac{a}{b} ba c d \frac{c}{d} dc,交叉相乘法的步骤是:
    • 计算 a × d a \times d a×d b × c b \times c b×c
    • 比较这两个积的大小,较大的分数对应较大的积。
  2. 如果 a × d > b × c a \times d > b \times c a×d>b×c,则 a b > c d \frac{a}{b} > \frac{c}{d} ba>dc
  3. 如果 a × d < b × c a \times d < b \times c a×d<b×c,则 a b < c d \frac{a}{b} < \frac{c}{d} ba<dc

这种方法非常快速简便,尤其适用于比较分数的大小,避免了直接计算小数或繁琐的分数化简过程。

(2)差分法比较分数大小

(3)交叉相乘法速算分数加减

交叉相乘的积相加或相减,做分子
两分母的的积做分母

交叉相乘法速算 分数加减 是将两个分数的分子通过交叉相乘并相加或相减,分母则通过相乘得到


案例 1: 3 4 + 5 6 \frac{3}{4} + \frac{5}{6} 43+65

  1. 交叉相乘

    • 3 × 6 = 18 3 \times 6 = 18 3×6=18
    • 4 × 5 = 20 4 \times 5 = 20 4×5=20
  2. 计算分子

    • 分子 = 18 + 20 = 38 18 + 20 = 38 18+20=38
  3. 计算分母

    • 分母 = 4 × 6 = 24 4 \times 6 = 24 4×6=24
  4. 结果

    • 3 4 + 5 6 = 38 24 \frac{3}{4} + \frac{5}{6} = \frac{38}{24} 43+65=2438
    • 简化分数: 38 24 = 19 12 \frac{38}{24} = \frac{19}{12} 2438=1219

答案: 3 4 + 5 6 = 19 12 \frac{3}{4} + \frac{5}{6} = \frac{19}{12} 43+65=1219


案例 2: 7 8 − 5 6 \frac{7}{8} - \frac{5}{6} 8765

  1. 交叉相乘

    • 7 × 6 = 42 7 \times 6 = 42 7×6=42
    • 8 × 5 = 40 8 \times 5 = 40 8×5=40
  2. 计算分子

    • 分子 = 42 − 40 = 2 42 - 40 = 2 4240=2
  3. 计算分母

    • 分母 = 8 × 6 = 48 8 \times 6 = 48 8×6=48
  4. 结果

    • 7 8 − 5 6 = 2 48 \frac{7}{8} - \frac{5}{6} = \frac{2}{48} 8765=482
    • 简化分数: 2 48 = 1 24 \frac{2}{48} = \frac{1}{24} 482=241

答案: 7 8 − 5 6 = 1 24 \frac{7}{8} - \frac{5}{6} = \frac{1}{24} 8765=241


案例 3: 2 5 + 3 7 \frac{2}{5} + \frac{3}{7} 52+73

  1. 交叉相乘

    • 2 × 7 = 14 2 \times 7 = 14 2×7=14
    • 5 × 3 = 15 5 \times 3 = 15 5×3=15
  2. 计算分子

    • 分子 = 14 + 15 = 29 14 + 15 = 29 14+15=29
  3. 计算分母

    • 分母 = 5 × 7 = 35 5 \times 7 = 35 5×7=35
  4. 结果

    • 2 5 + 3 7 = 29 35 \frac{2}{5} + \frac{3}{7} = \frac{29}{35} 52+73=3529

答案: 2 5 + 3 7 = 29 35 \frac{2}{5} + \frac{3}{7} = \frac{29}{35} 52+73=3529


案例 4: 4 9 − 2 5 \frac{4}{9} - \frac{2}{5} 9452

  1. 交叉相乘

    • 4 × 5 = 20 4 \times 5 = 20 4×5=20
    • 9 × 2 = 18 9 \times 2 = 18 9×2=18
  2. 计算分子

    • 分子 = 20 − 18 = 2 20 - 18 = 2 2018=2
  3. 计算分母

    • 分母 = 9 × 5 = 45 9 \times 5 = 45 9×5=45
  4. 结果

    • 4 9 − 2 5 = 2 45 \frac{4}{9} - \frac{2}{5} = \frac{2}{45} 9452=452

答案: 4 9 − 2 5 = 2 45 \frac{4}{9} - \frac{2}{5} = \frac{2}{45} 9452=452


案例 5: 7 10 + 3 4 \frac{7}{10} + \frac{3}{4} 107+43

  1. 交叉相乘

    • 7 × 4 = 28 7 \times 4 = 28 7×4=28
    • 10 × 3 = 30 10 \times 3 = 30 10×3=30
  2. 计算分子

    • 分子 = 28 + 30 = 58 28 + 30 = 58 28+30=58
  3. 计算分母

    • 分母 = 10 × 4 = 40 10 \times 4 = 40 10×4=40
  4. 结果

    • 7 10 + 3 4 = 58 40 \frac{7}{10} + \frac{3}{4} = \frac{58}{40} 107+43=4058
    • 简化分数: 58 40 = 29 20 \frac{58}{40} = \frac{29}{20} 4058=2029

答案: 7 10 + 3 4 = 29 20 \frac{7}{10} + \frac{3}{4} = \frac{29}{20} 107+43=2029


总结

  1. 交叉相乘:将分数的分子进行交叉相乘。
  2. 计算分子:加法时分子相加,减法时分子相减。
  3. 计算分母:两个分数的分母相乘。
  4. 简化结果:如果分子和分母有公因数,可以进一步简化分数。

这种方法特别适用于加减分数时,避免了使用最小公倍数的复杂过程,能够快速得出结果。

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值