速算技巧之分数
(1)交叉相乘法速算比较分数大小
如果第一个分数的分子与第二分数分母相乘的积大于第一个分数的分母和第二个分数分子的积,则第一个分数比较大,反之第二个分数比较大
交叉相乘法速算比较分数大小是通过对比两个分数的交叉相乘的积来判断大小,以下是几个使用该技巧进行的比较分数大小的案例,适用于教学:
案例 1:比较 3 4 \frac{3}{4} 43和 5 6 \frac{5}{6} 65
-
交叉相乘:
- 第一个分数的分子与第二个分数的分母相乘: 3 × 6 = 18 3 \times 6 = 18 3×6=18
- 第一个分数的分母与第二个分数的分子相乘: 4 × 5 = 20 4 \times 5 = 20 4×5=20
-
比较结果:
- 18 < 20 18 < 20 18<20
- 所以, 3 4 < 5 6 \frac{3}{4} < \frac{5}{6} 43<65
结论: 5 6 \frac{5}{6} 65比 3 4 \frac{3}{4} 43大。
案例 2:比较 7 8 \frac{7}{8} 87和 3 4 \frac{3}{4} 43
-
交叉相乘:
- 第一个分数的分子与第二个分数的分母相乘: 7 × 4 = 28 7 \times 4 = 28 7×4=28
- 第一个分数的分母与第二个分数的分子相乘: 8 × 3 = 24 8 \times 3 = 24 8×3=24
-
比较结果:
- 28 > 24 28 > 24 28>24
- 所以, 7 8 > 3 4 \frac{7}{8} > \frac{3}{4} 87>43
结论: 7 8 \frac{7}{8} 87比 3 4 \frac{3}{4} 43大。
案例 3:比较 2 3 \frac{2}{3} 32和 5 8 \frac{5}{8} 85
-
交叉相乘:
- 第一个分数的分子与第二个分数的分母相乘: 2 × 8 = 16 2 \times 8 = 16 2×8=16
- 第一个分数的分母与第二个分数的分子相乘: 3 × 5 = 15 3 \times 5 = 15 3×5=15
-
比较结果:
- 16 > 15 16 > 15 16>15
- 所以, 2 3 > 5 8 \frac{2}{3} > \frac{5}{8} 32>85
结论: 2 3 \frac{2}{3} 32比 5 8 \frac{5}{8} 85大。
案例 4:比较 9 10 \frac{9}{10} 109和 7 8 \frac{7}{8} 87
-
交叉相乘:
- 第一个分数的分子与第二个分数的分母相乘: 9 × 8 = 72 9 \times 8 = 72 9×8=72
- 第一个分数的分母与第二个分数的分子相乘: 10 × 7 = 70 10 \times 7 = 70 10×7=70
-
比较结果:
- 72 > 70 72 > 70 72>70
- 所以, 9 10 > 7 8 \frac{9}{10} > \frac{7}{8} 109>87
结论: 9 10 \frac{9}{10} 109比 7 8 \frac{7}{8} 87大。
案例 5:比较 5 6 \frac{5}{6} 65和 4 5 \frac{4}{5} 54
-
交叉相乘:
- 第一个分数的分子与第二个分数的分母相乘: 5 × 5 = 25 5 \times 5 = 25 5×5=25
- 第一个分数的分母与第二个分数的分子相乘: 6 × 4 = 24 6 \times 4 = 24 6×4=24
-
比较结果:
- 25 > 24 25 > 24 25>24
- 所以, 5 6 > 4 5 \frac{5}{6} > \frac{4}{5} 65>54
结论: 5 6 \frac{5}{6} 65比 4 5 \frac{4}{5} 54大。
总结
- 对于两个分数
a
b
\frac{a}{b}
ba和
c
d
\frac{c}{d}
dc,交叉相乘法的步骤是:
- 计算 a × d a \times d a×d和 b × c b \times c b×c。
- 比较这两个积的大小,较大的分数对应较大的积。
- 如果 a × d > b × c a \times d > b \times c a×d>b×c,则 a b > c d \frac{a}{b} > \frac{c}{d} ba>dc。
- 如果 a × d < b × c a \times d < b \times c a×d<b×c,则 a b < c d \frac{a}{b} < \frac{c}{d} ba<dc。
这种方法非常快速简便,尤其适用于比较分数的大小,避免了直接计算小数或繁琐的分数化简过程。
(2)差分法比较分数大小
(3)交叉相乘法速算分数加减
交叉相乘的积相加或相减,做分子
两分母的的积做分母
交叉相乘法速算 分数加减 是将两个分数的分子通过交叉相乘并相加或相减,分母则通过相乘得到
案例 1: 3 4 + 5 6 \frac{3}{4} + \frac{5}{6} 43+65
-
交叉相乘:
- 3 × 6 = 18 3 \times 6 = 18 3×6=18
- 4 × 5 = 20 4 \times 5 = 20 4×5=20
-
计算分子:
- 分子 = 18 + 20 = 38 18 + 20 = 38 18+20=38
-
计算分母:
- 分母 = 4 × 6 = 24 4 \times 6 = 24 4×6=24
-
结果:
- 3 4 + 5 6 = 38 24 \frac{3}{4} + \frac{5}{6} = \frac{38}{24} 43+65=2438
- 简化分数: 38 24 = 19 12 \frac{38}{24} = \frac{19}{12} 2438=1219
答案: 3 4 + 5 6 = 19 12 \frac{3}{4} + \frac{5}{6} = \frac{19}{12} 43+65=1219
案例 2: 7 8 − 5 6 \frac{7}{8} - \frac{5}{6} 87−65
-
交叉相乘:
- 7 × 6 = 42 7 \times 6 = 42 7×6=42
- 8 × 5 = 40 8 \times 5 = 40 8×5=40
-
计算分子:
- 分子 = 42 − 40 = 2 42 - 40 = 2 42−40=2
-
计算分母:
- 分母 = 8 × 6 = 48 8 \times 6 = 48 8×6=48
-
结果:
- 7 8 − 5 6 = 2 48 \frac{7}{8} - \frac{5}{6} = \frac{2}{48} 87−65=482
- 简化分数: 2 48 = 1 24 \frac{2}{48} = \frac{1}{24} 482=241
答案: 7 8 − 5 6 = 1 24 \frac{7}{8} - \frac{5}{6} = \frac{1}{24} 87−65=241
案例 3: 2 5 + 3 7 \frac{2}{5} + \frac{3}{7} 52+73
-
交叉相乘:
- 2 × 7 = 14 2 \times 7 = 14 2×7=14
- 5 × 3 = 15 5 \times 3 = 15 5×3=15
-
计算分子:
- 分子 = 14 + 15 = 29 14 + 15 = 29 14+15=29
-
计算分母:
- 分母 = 5 × 7 = 35 5 \times 7 = 35 5×7=35
-
结果:
- 2 5 + 3 7 = 29 35 \frac{2}{5} + \frac{3}{7} = \frac{29}{35} 52+73=3529
答案: 2 5 + 3 7 = 29 35 \frac{2}{5} + \frac{3}{7} = \frac{29}{35} 52+73=3529
案例 4: 4 9 − 2 5 \frac{4}{9} - \frac{2}{5} 94−52
-
交叉相乘:
- 4 × 5 = 20 4 \times 5 = 20 4×5=20
- 9 × 2 = 18 9 \times 2 = 18 9×2=18
-
计算分子:
- 分子 = 20 − 18 = 2 20 - 18 = 2 20−18=2
-
计算分母:
- 分母 = 9 × 5 = 45 9 \times 5 = 45 9×5=45
-
结果:
- 4 9 − 2 5 = 2 45 \frac{4}{9} - \frac{2}{5} = \frac{2}{45} 94−52=452
答案: 4 9 − 2 5 = 2 45 \frac{4}{9} - \frac{2}{5} = \frac{2}{45} 94−52=452
案例 5: 7 10 + 3 4 \frac{7}{10} + \frac{3}{4} 107+43
-
交叉相乘:
- 7 × 4 = 28 7 \times 4 = 28 7×4=28
- 10 × 3 = 30 10 \times 3 = 30 10×3=30
-
计算分子:
- 分子 = 28 + 30 = 58 28 + 30 = 58 28+30=58
-
计算分母:
- 分母 = 10 × 4 = 40 10 \times 4 = 40 10×4=40
-
结果:
- 7 10 + 3 4 = 58 40 \frac{7}{10} + \frac{3}{4} = \frac{58}{40} 107+43=4058
- 简化分数: 58 40 = 29 20 \frac{58}{40} = \frac{29}{20} 4058=2029
答案: 7 10 + 3 4 = 29 20 \frac{7}{10} + \frac{3}{4} = \frac{29}{20} 107+43=2029
总结
- 交叉相乘:将分数的分子进行交叉相乘。
- 计算分子:加法时分子相加,减法时分子相减。
- 计算分母:两个分数的分母相乘。
- 简化结果:如果分子和分母有公因数,可以进一步简化分数。
这种方法特别适用于加减分数时,避免了使用最小公倍数的复杂过程,能够快速得出结果。