C# 使用OnnxRuntime 部署yolov11 (Detection)

C# 使用OnnxRuntime 部署yolov11 (Detection)

C# ONNXRuntime部署yoloV11
链接: https://pan.baidu.com/s/1RM4wTkaPn4efwOfS7HpgXw?pwd=1234
提取码: 1234

一 安装Yolo,导出onnx模型

pip install ultralytics

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load an official model

# Export the model
model.export(format="onnx")

二 安装所需包OpenCvsharp和Microsoft.ML.OnnxRuntime

在这里插入图片描述

在这里插入图片描述

三 设计界面

在这里插入图片描述

四 定义变量和辅助函数Transpose、辅助类DetectionResult

        public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
        {
            float[] transposedTensorData = new float[tensorData.Length];

            fixed (float* pTensorData = tensorData)
            {
                fixed (float* pTransposedData = transposedTensorData)
                {
                    for (int i = 0; i < rows; i++)
                    {
                        for (int j = 0; j < cols; j++)
                        {
                            int index = i * cols + j;
                            int transposedIndex = j * rows + i;
                            pTransposedData[transposedIndex] = pTensorData[index];
                        }
                    }
                }
            }
            return transposedTensorData;
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string model_path;
        string classer_path;
        public string[] class_names;
        public int class_num;

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int input_height;
        int input_width;
        float ratio_height;
        float ratio_width;

        InferenceSession onnx_session;

        int box_num;
        float conf_threshold;
        float nms_threshold;
  public class DetectionResult
  {
      public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
      {
          this.ClassId = ClassId;
          this.Confidence = Confidence;
          this.Rect = Rect;
          this.Class = Class;
      }

      public string Class { get; set; }

      public int ClassId { get; set; }

      public float Confidence { get; set; }

      public Rect Rect { get; set; }

  }

五 加载模型和图像和label.txt

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = @"D:\\workplace\\repos\\WindowsFormsApp12\\WindowsFormsApp12\\model\\yolo11n.onnx";

            //创建输出会话,用于输出模型读取信息
            SessionOptions options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            input_height = 640;
            input_width = 640;

            box_num = 8400;
            conf_threshold = 0.25f;
            nms_threshold = 0.5f;

            classer_path = @"D:\\workplace\\repos\\WindowsFormsApp12\\WindowsFormsApp12\\model\\label.txt";
            class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
            class_num = class_names.Length;

            image_path = "D:/cat.png";
            pictureBox1.Image = new Bitmap(image_path);
        }

六 推理

    private void button2_Click(object sender, EventArgs e)
    {
        if (image_path == "")
        {
            return;
        }

        button2.Enabled = false;
        pictureBox2.Image = null;
        textBox1.Text = "";
        Application.DoEvents();

        Mat image = new Mat(image_path);

        //图片缩放
        int height = image.Rows;
        int width = image.Cols;
        Mat temp_image = image.Clone();
        if (height > input_height || width > input_width)
        {
            float scale = Math.Min((float)input_height / height, (float)input_width / width);
            OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
            Cv2.Resize(image, temp_image, new_size);
        }
        ratio_height = (float)height / temp_image.Rows;
        ratio_width = (float)width / temp_image.Cols;
        Mat input_img = new Mat();
        Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);

        //Cv2.ImShow("input_img", input_img);

        //输入Tensor
        Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });

        for (int y = 0; y < input_img.Height; y++)
        {
            for (int x = 0; x < input_img.Width; x++)
            {
                input_tensor[0, 0, y, x] = input_img.At<Vec3b>(y, x)[0] / 255f;
                input_tensor[0, 1, y, x] = input_img.At<Vec3b>(y, x)[1] / 255f;
                input_tensor[0, 2, y, x] = input_img.At<Vec3b>(y, x)[2] / 255f;
            }
        }

        List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
        {
            NamedOnnxValue.CreateFromTensor("images", input_tensor)
        };

        //推理
        dt1 = DateTime.Now;
        var ort_outputs = onnx_session.Run(input_container).ToArray();
        dt2 = DateTime.Now;

        float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 + class_num, box_num);

        float[] confidenceInfo = new float[class_num];
        float[] rectData = new float[4];

        List<DetectionResult> detResults = new List<DetectionResult>();

        for (int i = 0; i < box_num; i++)
        {
            Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
            Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);

            float score = confidenceInfo.Max(); // 获取最大值

            int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置

            int _centerX = (int)(rectData[0] * ratio_width);
            int _centerY = (int)(rectData[1] * ratio_height);
            int _width = (int)(rectData[2] * ratio_width);
            int _height = (int)(rectData[3] * ratio_height);

            detResults.Add(new DetectionResult(
               maxIndex,
               class_names[maxIndex],
               new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
               score));
        }

        //NMS
        CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
        detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();

        //绘制结果
        Mat result_image = image.Clone();
        foreach (DetectionResult r in detResults)
        {
            Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
            Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
        }

        pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
        textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        button2.Enabled = true;
    }

设置pictureBox为zoom模式

在这里插入图片描述

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值