群的定义与基本性质
一、群的定义与基本性质
-
群的定义:
群是一个集合,配合一个二元运算,满足以下四个条件:- 封闭性:对于群
G
G
G 中的任意元素
a
,
b
a, b
a,b,其运算结果
a
∗
b
a * b
a∗b 仍属于
G
G
G。
∀ a , b ∈ G , a ∗ b ∈ G \forall a, b \in G, a * b \in G ∀a,b∈G,a∗b∈G - 结合性:群运算满足结合律,即对于群
G
G
G 中的任意元素
a
,
b
,
c
a, b, c
a,b,c,有:
( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a * b) * c = a * (b * c) (a∗b)∗c=a∗(b∗c) - 单位元素:存在一个单位元素
e
∈
G
e \in G
e∈G,使得对于任意
a
∈
G
a \in G
a∈G,有:
a ∗ e = e ∗ a = a a * e = e * a = a a∗e=e∗a=a - 逆元素:对于群
G
G
G 中的任意元素
a
a
a,存在逆元素
a
−
1
∈
G
a^{-1} \in G
a−1∈G,使得:
a ∗ a − 1 = a − 1 ∗ a = e a * a^{-1} = a^{-1} * a = e a∗a−1=a−1∗a=e
- 封闭性:对于群
G
G
G 中的任意元素
a
,
b
a, b
a,b,其运算结果
a
∗
b
a * b
a∗b 仍属于
G
G
G。
-
群的性质:
- 交换群(Abelian群):如果群中的元素满足交换律,即对于任意
a
,
b
∈
G
a, b \in G
a,b∈G,有:
a ∗ b = b ∗ a a * b = b * a a∗b=b∗a
则称 G G G 为交换群。 - 非交换群(非Abelian群):如果存在 a , b ∈ G a, b \in G a,b∈G 使得 a ∗ b ≠ b ∗ a a * b \neq b * a a∗b=b∗a,则称 G G G 为非交换群。
- 交换群(Abelian群):如果群中的元素满足交换律,即对于任意
a
,
b
∈
G
a, b \in G
a,b∈G,有:
二、群的例子
-
整数加法群 ( Z , + ) (\mathbb{Z}, +) (Z,+):
- 该群由整数集 Z \mathbb{Z} Z 组成,群运算为加法。
- 其单位元素为 0,任意整数 a a a 的逆元素是 − a -a −a。
- 显然, Z \mathbb{Z} Z 是交换群。
-
对称群 S n S_n Sn:
- 对称群 S n S_n Sn 是由所有 n n n 个元素的排列构成的群。
- 该群的运算是排列的组合。
- 该群的单位元素是恒等置换(即不改变任何元素的置换),每个置换都有一个逆置换。
-
矩阵群 G L n ( R ) GL_n(\mathbb{R}) GLn(R):
- 一般线性群:矩阵群 G L n ( R ) GL_n(\mathbb{R}) GLn(R) 是所有 n × n n \times n n×n 非奇异矩阵组成的群,运算为矩阵乘法。
- 该群的单位元素是单位矩阵,矩阵的逆元素是其逆矩阵。
三、群的同构
-
同构群(Isomorphic Groups):
- 如果存在一个双射映射
ϕ
:
G
1
→
G
2
\phi: G_1 \to G_2
ϕ:G1→G2,使得对于所有
a
,
b
∈
G
1
a, b \in G_1
a,b∈G1,有:
ϕ ( a ∗ b ) = ϕ ( a ) ∗ ϕ ( b ) \phi(a * b) = \phi(a) * \phi(b) ϕ(a∗b)=ϕ(a)∗ϕ(b)
则称 G 1 G_1 G1 和 G 2 G_2 G2 是同构群。 - 同构群具有相同的结构,换句话说,群的代数结构不会因为选择不同的群而改变。
- 如果存在一个双射映射
ϕ
:
G
1
→
G
2
\phi: G_1 \to G_2
ϕ:G1→G2,使得对于所有
a
,
b
∈
G
1
a, b \in G_1
a,b∈G1,有:
-
判断两个群是否同构:
- 如果两个群的元素个数不同,则它们不可能同构。
- 如果两个群是交换群,且它们的阶数(元素个数)相同,那么它们有可能是同构群。
- 可以通过构造同构映射,来判断两个群是否同构。
四、课堂活动
1. 举例说明常见的群:整数加法群、矩阵群等,讨论其结构
活动内容:
-
整数加法群:验证整数加法群是否满足群的四个条件,计算一些例子,如:
- 0 是单位元素。
- 任意整数的逆元素: a − 1 = − a a^{-1} = -a a−1=−a。
- 验证结合性和封闭性。
-
矩阵群:对于 2 × 2 2 \times 2 2×2 矩阵群 G L 2 ( R ) GL_2(\mathbb{R}) GL2(R),计算几个矩阵的乘法,并检查其是否满足群的四个条件。
2. 通过具体问题引导学生理解群的性质
活动内容:
- 设计一个问题,要求学生通过判断给定的运算是否满足群的条件,从而验证其是否是群。
- 举例:给定集合 G = { 0 , 2 , 4 } G = \{0, 2, 4\} G={0,2,4} 和运算“加 2 mod 6”,判断该集合是否构成群。
五、Python代码实现示例
- 判断群的四个条件:
通过简单的Python代码判断一个集合及其运算是否满足群的四个条件。
import numpy as np
# 定义集合和运算
G = [0, 2, 4]
mod = 6
# 封闭性:验证加法模6
def is_closed(G, mod):
for a in G:
for b in G:
if (a + b) % mod not in G:
return False
return True
# 结合性:验证加法模6的结合性
def is_associative(G, mod):
for a in G:
for b in G:
for c in G:
if ((a + b) % mod + c) % mod != (a + (b + c) % mod) % mod:
return False
return True
# 单位元素:存在一个单位元素e,使得a + e = a
def has_identity(G, mod):
for e in G:
if all((a + e) % mod == a for a in G):
return e
return None
# 逆元素:每个元素都有一个逆元素
def has_inverses(G, mod, e):
for a in G:
if not any((a + b) % mod == e for b in G):
return False
return True
# 验证群的条件
e = has_identity(G, mod)
if e is not None and is_closed(G, mod) and is_associative(G, mod) and has_inverses(G, mod, e):
print("该集合及运算满足群的四个条件!")
else:
print("该集合及运算不满足群的条件。")
- 矩阵群的示例:
import numpy as np
# 定义矩阵群
def is_invertible(matrix):
return np.linalg.det(matrix) != 0
A = np.array([[1, 2], [3, 4]])
B = np.array([[2, 0], [0, 1]])
# 判断A和B是否为可逆矩阵
if is_invertible(A) and is_invertible(B):
print("矩阵A和B都是可逆矩阵。")
else:
print("矩阵A或B不是可逆矩阵。")
总结
通过这节课,将掌握群的定义、基本性质、群的例子、群的同构等内容。