Lebesgue积分的引入与性质

Lebesgue积分的引入与性质

1. Lebesgue积分的定义

Lebesgue积分的基本定义:

Lebesgue积分是实变函数中的一种积分方法,通常用于处理Riemann积分无法处理的情形。它基于测度理论,通过对函数的定义域进行划分,并结合函数的取值进行积分。

给定一个可测函数 f : X → R f: X \to \mathbb{R} f:XR,其Lebesgue积分定义为:
∫ A f   d μ = sup ⁡ { ∫ A ϕ   d μ ∣ 0 ≤ ϕ ≤ f , ϕ  是简单函数 } \int_A f \, d\mu = \sup\left\{ \int_A \phi \, d\mu \mid 0 \leq \phi \leq f, \phi \text{ 是简单函数}\right\} Afdμ=sup{Aϕdμ0ϕf,ϕ 是简单函数}
其中, A A A 是可测集合, ϕ \phi ϕ 是简单函数,简单函数是指有限个常数值的函数。

Lebesgue积分与Riemann积分的区别:
  • Riemann积分:是通过对函数的定义域进行划分,计算每个小区间内的面积来求解积分。Riemann积分更适用于连续或间断点少的函数。
  • Lebesgue积分:通过对函数的值进行划分,对每个“值”所在的集合进行积分。Lebesgue积分更适合处理复杂的函数和具有不规则间断的函数。

2. 简单函数与可积函数

简单函数的积分:

简单函数是指有限个常数值的函数。假设 ϕ \phi ϕ 是简单函数,可以表示为:
ϕ ( x ) = ∑ i = 1 n a i χ A i ( x ) \phi(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x) ϕ(x)=i=1naiχAi(x)
其中, χ A i \chi_{A_i} χAi 是集合 A i A_i Ai 的指示函数, a i a_i ai 是常数,积分可以通过加权求和计算:
∫ A ϕ   d μ = ∑ i = 1 n a i μ ( A i ) \int_A \phi \, d\mu = \sum_{i=1}^{n} a_i \mu(A_i) Aϕdμ=i=1naiμ(Ai)

可积函数的定义:

函数 f f f 是Lebesgue可积的,当且仅当:
∫ X ∣ f ( x ) ∣   d μ < ∞ \int_X |f(x)| \, d\mu < \infty Xf(x)dμ<
即函数的绝对值的Lebesgue积分有限。


3. Lebesgue积分的性质

线性性:

Lebesgue积分具有线性性:
∫ A ( a f + b g )   d μ = a ∫ A f   d μ + b ∫ A g   d μ \int_A (a f + b g) \, d\mu = a \int_A f \, d\mu + b \int_A g \, d\mu A(af+bg)dμ=aAfdμ+bAgdμ
其中, a a a b b b 为常数, f f f g g g 为可积函数。

单调性:

如果 f ≤ g f \leq g fg,且 f f f, g g g 均可积,则有:
∫ A f   d μ ≤ ∫ A g   d μ \int_A f \, d\mu \leq \int_A g \, d\mu AfdμAgdμ

可加性:

如果 f f f A 1 , A 2 , … A_1, A_2, \dots A1,A2, 上是可积的,并且这些集合是两两不交的,那么:
∫ ⋃ i = 1 ∞ A i f   d μ = ∑ i = 1 ∞ ∫ A i f   d μ \int_{\bigcup_{i=1}^{\infty} A_i} f \, d\mu = \sum_{i=1}^{\infty} \int_{A_i} f \, d\mu i=1Aifdμ=i=1Aifdμ
这表示Lebesgue积分对于可加性是封闭的。


4. 课堂活动与练习

活动 1:计算简单函数的Lebesgue积分

例题:设 f ( x ) = 2 χ [ 0 , 1 ] ( x ) + 3 χ [ 1 , 2 ] ( x ) f(x) = 2 \chi_{[0, 1]}(x) + 3 \chi_{[1, 2]}(x) f(x)=2χ[0,1](x)+3χ[1,2](x),计算其在区间 [ 0 , 2 ] [0, 2] [0,2] 上的Lebesgue积分。

解答

  • 将简单函数 f ( x ) f(x) f(x) 写成常数值和集合的乘积形式:
    f ( x ) = 2 χ [ 0 , 1 ] ( x ) + 3 χ [ 1 , 2 ] ( x ) f(x) = 2 \chi_{[0, 1]}(x) + 3 \chi_{[1, 2]}(x) f(x)=2χ[0,1](x)+3χ[1,2](x)
  • 计算每个部分的Lebesgue积分:
    ∫ 0 2 f ( x )   d x = ∫ [ 0 , 1 ] 2   d μ + ∫ [ 1 , 2 ] 3   d μ = 2 ⋅ 1 + 3 ⋅ 1 = 5 \int_0^2 f(x) \, dx = \int_{[0, 1]} 2 \, d\mu + \int_{[1, 2]} 3 \, d\mu = 2 \cdot 1 + 3 \cdot 1 = 5 02f(x)dx=[0,1]2dμ+[1,2]3dμ=21+31=5
活动 2:比较Lebesgue积分与Riemann积分的差异

例题:考察函数 f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1 在区间 [ 0 , 1 ] [0, 1] [0,1] 上的积分。讨论其在Riemann积分和Lebesgue积分下的不同表现。

解答

  • 在Riemann积分下, f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1 [ 0 , 1 ] [0, 1] [0,1] 上不可积,因为它在 x = 0 x = 0 x=0 处有无限的间断。
  • 然而,在Lebesgue积分下,我们可以处理这种情况,因为Lebesgue积分可以在“局部不规则”的点上进行处理。

5. Python代码示例:Lebesgue积分计算

下面是一个计算简单函数Lebesgue积分的Python代码示例:

import numpy as np
import matplotlib.pyplot as plt

# 定义指示函数
def indicator_function(set_condition, domain):
    return np.array([1 if condition else 0 for condition in set_condition(domain)])

# 简单函数 f(x) = 2 on [0, 1] and 3 on [1, 2]
def simple_function(x):
    return 2 * indicator_function((x >= 0) & (x <= 1), x) + 3 * indicator_function((x >= 1) & (x <= 2), x)

# 定义区间
x_vals = np.linspace(0, 2, 1000)
y_vals = simple_function(x_vals)

# 计算Lebesgue积分
integral_value = np.trapz(y_vals, x_vals)
print(f"Lebesgue integral of the simple function: {integral_value}")

# 可视化
plt.plot(x_vals, y_vals, label="Simple function f(x)")
plt.fill_between(x_vals, 0, y_vals, alpha=0.3)
plt.title("Visualization of Simple Function")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.show()

该代码使用Python计算简单函数的Lebesgue积分,并绘制其图像。使用np.trapz进行数值积分,帮助学生理解如何实现Lebesgue积分。


总结:

  • Lebesgue积分:通过对函数值进行划分并计算其权重,解决了Riemann积分无法处理的复杂函数。
  • 简单函数与可积函数:通过简单函数的定义和Lebesgue可积条件,帮助学生理解可积函数的性质。
  • Lebesgue积分的性质:包括线性性、单调性、可加性等,都是Lebesgue积分非常重要的特性。

通过这些基础知识和实际例子,可以更好地理解Lebesgue积分,并掌握如何计算Lebesgue积分以及其应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值