Lebesgue积分的引入与性质
1. Lebesgue积分的定义
Lebesgue积分的基本定义:
Lebesgue积分是实变函数中的一种积分方法,通常用于处理Riemann积分无法处理的情形。它基于测度理论,通过对函数的定义域进行划分,并结合函数的取值进行积分。
给定一个可测函数
f
:
X
→
R
f: X \to \mathbb{R}
f:X→R,其Lebesgue积分定义为:
∫
A
f
d
μ
=
sup
{
∫
A
ϕ
d
μ
∣
0
≤
ϕ
≤
f
,
ϕ
是简单函数
}
\int_A f \, d\mu = \sup\left\{ \int_A \phi \, d\mu \mid 0 \leq \phi \leq f, \phi \text{ 是简单函数}\right\}
∫Afdμ=sup{∫Aϕdμ∣0≤ϕ≤f,ϕ 是简单函数}
其中,
A
A
A 是可测集合,
ϕ
\phi
ϕ 是简单函数,简单函数是指有限个常数值的函数。
Lebesgue积分与Riemann积分的区别:
- Riemann积分:是通过对函数的定义域进行划分,计算每个小区间内的面积来求解积分。Riemann积分更适用于连续或间断点少的函数。
- Lebesgue积分:通过对函数的值进行划分,对每个“值”所在的集合进行积分。Lebesgue积分更适合处理复杂的函数和具有不规则间断的函数。
2. 简单函数与可积函数
简单函数的积分:
简单函数是指有限个常数值的函数。假设
ϕ
\phi
ϕ 是简单函数,可以表示为:
ϕ
(
x
)
=
∑
i
=
1
n
a
i
χ
A
i
(
x
)
\phi(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x)
ϕ(x)=i=1∑naiχAi(x)
其中,
χ
A
i
\chi_{A_i}
χAi 是集合
A
i
A_i
Ai 的指示函数,
a
i
a_i
ai 是常数,积分可以通过加权求和计算:
∫
A
ϕ
d
μ
=
∑
i
=
1
n
a
i
μ
(
A
i
)
\int_A \phi \, d\mu = \sum_{i=1}^{n} a_i \mu(A_i)
∫Aϕdμ=i=1∑naiμ(Ai)
可积函数的定义:
函数
f
f
f 是Lebesgue可积的,当且仅当:
∫
X
∣
f
(
x
)
∣
d
μ
<
∞
\int_X |f(x)| \, d\mu < \infty
∫X∣f(x)∣dμ<∞
即函数的绝对值的Lebesgue积分有限。
3. Lebesgue积分的性质
线性性:
Lebesgue积分具有线性性:
∫
A
(
a
f
+
b
g
)
d
μ
=
a
∫
A
f
d
μ
+
b
∫
A
g
d
μ
\int_A (a f + b g) \, d\mu = a \int_A f \, d\mu + b \int_A g \, d\mu
∫A(af+bg)dμ=a∫Afdμ+b∫Agdμ
其中,
a
a
a 和
b
b
b 为常数,
f
f
f 和
g
g
g 为可积函数。
单调性:
如果
f
≤
g
f \leq g
f≤g,且
f
f
f,
g
g
g 均可积,则有:
∫
A
f
d
μ
≤
∫
A
g
d
μ
\int_A f \, d\mu \leq \int_A g \, d\mu
∫Afdμ≤∫Agdμ
可加性:
如果
f
f
f 在
A
1
,
A
2
,
…
A_1, A_2, \dots
A1,A2,… 上是可积的,并且这些集合是两两不交的,那么:
∫
⋃
i
=
1
∞
A
i
f
d
μ
=
∑
i
=
1
∞
∫
A
i
f
d
μ
\int_{\bigcup_{i=1}^{\infty} A_i} f \, d\mu = \sum_{i=1}^{\infty} \int_{A_i} f \, d\mu
∫⋃i=1∞Aifdμ=i=1∑∞∫Aifdμ
这表示Lebesgue积分对于可加性是封闭的。
4. 课堂活动与练习
活动 1:计算简单函数的Lebesgue积分
例题:设 f ( x ) = 2 χ [ 0 , 1 ] ( x ) + 3 χ [ 1 , 2 ] ( x ) f(x) = 2 \chi_{[0, 1]}(x) + 3 \chi_{[1, 2]}(x) f(x)=2χ[0,1](x)+3χ[1,2](x),计算其在区间 [ 0 , 2 ] [0, 2] [0,2] 上的Lebesgue积分。
解答:
- 将简单函数
f
(
x
)
f(x)
f(x) 写成常数值和集合的乘积形式:
f ( x ) = 2 χ [ 0 , 1 ] ( x ) + 3 χ [ 1 , 2 ] ( x ) f(x) = 2 \chi_{[0, 1]}(x) + 3 \chi_{[1, 2]}(x) f(x)=2χ[0,1](x)+3χ[1,2](x) - 计算每个部分的Lebesgue积分:
∫ 0 2 f ( x ) d x = ∫ [ 0 , 1 ] 2 d μ + ∫ [ 1 , 2 ] 3 d μ = 2 ⋅ 1 + 3 ⋅ 1 = 5 \int_0^2 f(x) \, dx = \int_{[0, 1]} 2 \, d\mu + \int_{[1, 2]} 3 \, d\mu = 2 \cdot 1 + 3 \cdot 1 = 5 ∫02f(x)dx=∫[0,1]2dμ+∫[1,2]3dμ=2⋅1+3⋅1=5
活动 2:比较Lebesgue积分与Riemann积分的差异
例题:考察函数 f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1 在区间 [ 0 , 1 ] [0, 1] [0,1] 上的积分。讨论其在Riemann积分和Lebesgue积分下的不同表现。
解答:
- 在Riemann积分下, f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1 在 [ 0 , 1 ] [0, 1] [0,1] 上不可积,因为它在 x = 0 x = 0 x=0 处有无限的间断。
- 然而,在Lebesgue积分下,我们可以处理这种情况,因为Lebesgue积分可以在“局部不规则”的点上进行处理。
5. Python代码示例:Lebesgue积分计算
下面是一个计算简单函数Lebesgue积分的Python代码示例:
import numpy as np
import matplotlib.pyplot as plt
# 定义指示函数
def indicator_function(set_condition, domain):
return np.array([1 if condition else 0 for condition in set_condition(domain)])
# 简单函数 f(x) = 2 on [0, 1] and 3 on [1, 2]
def simple_function(x):
return 2 * indicator_function((x >= 0) & (x <= 1), x) + 3 * indicator_function((x >= 1) & (x <= 2), x)
# 定义区间
x_vals = np.linspace(0, 2, 1000)
y_vals = simple_function(x_vals)
# 计算Lebesgue积分
integral_value = np.trapz(y_vals, x_vals)
print(f"Lebesgue integral of the simple function: {integral_value}")
# 可视化
plt.plot(x_vals, y_vals, label="Simple function f(x)")
plt.fill_between(x_vals, 0, y_vals, alpha=0.3)
plt.title("Visualization of Simple Function")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.show()
该代码使用Python计算简单函数的Lebesgue积分,并绘制其图像。使用np.trapz
进行数值积分,帮助学生理解如何实现Lebesgue积分。
总结:
- Lebesgue积分:通过对函数值进行划分并计算其权重,解决了Riemann积分无法处理的复杂函数。
- 简单函数与可积函数:通过简单函数的定义和Lebesgue可积条件,帮助学生理解可积函数的性质。
- Lebesgue积分的性质:包括线性性、单调性、可加性等,都是Lebesgue积分非常重要的特性。
通过这些基础知识和实际例子,可以更好地理解Lebesgue积分,并掌握如何计算Lebesgue积分以及其应用。