寿险精算基础
课程目标
- 理解生命表与死亡率的构造与计算方法。
- 掌握定期寿险和终身寿险的定价原理。
- 掌握如何计算保费和确定合理的保额。
- 通过案例分析和计算来加深对寿险精算的理解。
一、生命表与死亡率
1. 生命表的概念与构造
生命表(Life Table)是用于描述一个特定群体的死亡率和生存率的统计工具。它展示了从出生到各个年龄段的预期生存概率。
- 生命表的构造主要包括以下几个重要参数:
- lx:在某一年龄x时,存活到该年龄的个体人数。
- qx:某一年龄x的死亡率,即年龄为x的人群在一段时间内死亡的概率。
- px:某一年龄x的生存率,即年龄为x的人群在一段时间内存活的概率。
- Tx:年龄为x及以后的人群剩余寿命总和。
死亡率计算公式
q x = 死亡人数 at 年龄 x 总人口人数 at 年龄 x q_x = \frac{\text{死亡人数 at 年龄 } x}{\text{总人口人数 at 年龄 } x} qx=总人口人数 at 年龄 x死亡人数 at 年龄 x
生存率计算公式
p x = 1 − q x p_x = 1 - q_x px=1−qx
演示计算:
假设我们有一个小型生命表,假设某年有1000人活到40岁,40岁到50岁之间有50人死亡。
年龄 | lx | 死亡人数 | qx | px |
---|---|---|---|---|
40 | 1000 | 50 | 0.05 | 0.95 |
50 | 950 | 60 | 0.063 | 0.937 |
计算:
- 40岁到50岁死亡率: q 40 = 50 1000 = 0.05 q_{40} = \frac{50}{1000} = 0.05 q40=100050=0.05
- 40岁到50岁生存率: p 40 = 1 − 0.05 = 0.95 p_{40} = 1 - 0.05 = 0.95 p40=1−0.05=0.95
2. 寿险产品定价
1. 定期寿险与终身寿险的定价原理
-
定期寿险:这是一种在特定期限内提供死亡保障的寿险产品,定期寿险的定价原则通常依据该期间内的死亡概率和预期现金流。
定期寿险的定价公式(以年金方式计算):
P = ∑ t = 1 n v t ⋅ q x ⋅ A P = \sum_{t=1}^{n} v^t \cdot q_x \cdot A P=t=1∑nvt⋅qx⋅A
其中, P P P为保费, v t v^t vt为时间t的贴现因子(通常用年利率来计算), q x q_x qx为死亡率, A A A为给付金额。 -
终身寿险:提供终身保障的寿险产品,其定价考虑到终身的死亡率和给付金额。
终身寿险定价公式:
P = ∑ t = 1 ∞ v t ⋅ q x ⋅ A P = \sum_{t=1}^{\infty} v^t \cdot q_x \cdot A P=t=1∑∞vt⋅qx⋅A
3. 保费与保额
1. 如何确定合理的保额
合理的保额是指当被保险人去世时,能够覆盖家庭生活、负债和其他必要支出的保额。在实际操作中,通常依据被保险人的收入、家庭支出以及债务情况来确定。
2. 保费的计算
假设一个人25岁,投保终身寿险,保额为100万元,预计年死亡率为0.05%,年贴现率为3%。
计算过程:
- 年死亡率: q 25 = 0.0005 q_{25} = 0.0005 q25=0.0005
- 贴现因子: v t = 1 ( 1 + 0.03 ) t v^t = \frac{1}{(1+0.03)^t} vt=(1+0.03)t1
对于终身寿险的定价计算公式,假设每年支付保费:
P = ∑ t = 1 ∞ v t ⋅ q 25 ⋅ 1000000 P = \sum_{t=1}^{\infty} v^t \cdot q_{25} \cdot 1000000 P=t=1∑∞vt⋅q25⋅1000000
二、课堂活动:案例分析与计算
活动1:计算定期寿险保费
案例:
假设有一位30岁的男性,投保定期寿险,保额为50万元,保障期为20年。死亡率表如下:
年龄 | 死亡率 q x q_x qx |
---|---|
30 | 0.001 |
31 | 0.0012 |
32 | 0.0015 |
… | … |
49 | 0.0025 |
已知年贴现率为4%。
步骤:
- 计算每一年该年龄段的死亡人数及预期给付金额。
- 根据死亡率和贴现率来确定每年的保费。
解答过程:
- 对每个年龄的死亡人数计算给付金额。
- 每年的贴现值乘以给付金额,得出每年需要支付的保费总额。
活动2:生命表与预测保险公司风险
案例:
利用上述30岁男性的生命表数据,预测在20年内,保险公司面临的风险。
步骤:
- 根据每一年的死亡率,计算每年的风险。
- 绘制风险随时间变化的图表,观察风险曲线。
三、Python代码实现
以下是一个简单的Python代码示例,用于计算定期寿险的保费。
import numpy as np
# 定义参数
age = 30
death_rates = [0.001, 0.0012, 0.0015, 0.0018, 0.002, 0.0022, 0.0025, 0.0028, 0.003, 0.0032,
0.0034, 0.0036, 0.0038, 0.004, 0.0042, 0.0044, 0.0046, 0.0048, 0.005, 0.0052, 0.0054]
discount_rate = 0.04
coverage = 500000 # 保额
years = len(death_rates)
# 计算保费
def calculate_premium(death_rates, discount_rate, coverage):
premiums = []
for t in range(years):
# 计算贴现因子
discount_factor = 1 / (1 + discount_rate) ** (t + 1)
# 计算每年的死亡率对保费的影响
premium = discount_factor * death_rates[t] * coverage
premiums.append(premium)
return np.sum(premiums)
# 计算保费总额
premium_total = calculate_premium(death_rates, discount_rate, coverage)
print(f"定期寿险的总保费为: {premium_total:.2f}元")
总结
通过这一堂课,可以掌握寿险精算的基础理论和计算方法,包括如何利用生命表计算死亡率,如何定价定期寿险和终身寿险,如何根据死亡率和贴现率来计算保费以及如何分析保险公司面临的风险。通过课堂活动和Python代码实现,能够更好地理解和应用这些概念。