投资组合理论与风险管理
一、Markowitz 投资组合理论
1. 理论概述
- 目标
Markowitz 投资组合理论(均值—方差模型)旨在通过分散化投资实现风险与收益的最佳权衡。 - 基本概念
- 投资组合的预期收益:
E [ R p ] = ∑ i = 1 n w i r i E[R_p] = \sum_{i=1}^n w_i r_i E[Rp]=i=1∑nwiri
其中, w i w_i wi 为第 i i i 个资产的权重, r i r_i ri 为其预期收益。 - 投资组合的风险(方差或标准差):
σ p 2 = w T Σ w \sigma_p^2 = \mathbf{w}^T \Sigma\, \mathbf{w} σp2=wTΣw
其中, Σ \Sigma Σ 为资产收益率的协方差矩阵。
- 投资组合的预期收益:
- 有效前沿
在所有可能的投资组合中,有效前沿代表那些在给定风险水平下能实现最高预期收益的组合。
数学上,我们可以通过求解下面的最优化问题获得有效前沿:
min w w T Σ w (最小化风险) \min_{\mathbf{w}} \quad \mathbf{w}^T \Sigma\, \mathbf{w} \quad \text{(最小化风险)} wminwTΣw(最小化风险)
约束条件:
∑ i = 1 n w i = 1 , ∑ i = 1 n w i r i = R target , w i ≥ 0 ( i = 1 , … , n ) \sum_{i=1}^{n} w_i = 1,\quad \sum_{i=1}^{n} w_i r_i = R_{\text{target}},\quad w_i \ge 0 \quad (i=1,\ldots,n) i=1∑nwi=1,i=1∑nwiri=Rtarget,wi≥0(i=1,…,n)
2. 案例练习:二资产组合
假设有两只资产,其预期收益分别为 10% 和 20%,协方差矩阵为:
Σ
=
(
0.005
0.001
0.001
0.010
)
\Sigma = \begin{pmatrix} 0.005 & 0.001 \\ 0.001 & 0.010 \end{pmatrix}
Σ=(0.0050.0010.0010.010)
令资产 1 的权重为
w
w
w,则资产 2 权重为
1
−
w
1-w
1−w;组合预期收益为:
E
[
R
p
]
=
w
×
0.10
+
(
1
−
w
)
×
0.20
=
0.20
−
0.10
w
E[R_p] = w \times 0.10 + (1-w) \times 0.20 = 0.20 - 0.10w
E[Rp]=w×0.10+(1−w)×0.20=0.20−0.10w
组合方差为:
σ
p
2
=
w
2
⋅
0.005
+
(
1
−
w
)
2
⋅
0.010
+
2
w
(
1
−
w
)
⋅
0.001
\sigma_p^2 = w^2 \cdot 0.005 + (1-w)^2 \cdot 0.010 + 2w(1-w)\cdot 0.001
σp2=w2⋅0.005+(1−w)2⋅0.010+2w(1−w)⋅0.001
通过对不同目标收益
R
target
R_{\text{target}}
Rtarget 选择合适的
w
w
w(或者直接利用数值方法求解),我们可以得到有效前沿上各组合的风险与收益关系。
二、CAPM 模型
1. 模型定义
资本资产定价模型(CAPM)描述了资产的预期收益与其系统性风险之间的关系。公式为:
E
[
r
i
]
=
r
f
+
β
i
(
E
[
r
m
]
−
r
f
)
E[r_i] = r_f + \beta_i (E[r_m] - r_f)
E[ri]=rf+βi(E[rm]−rf)
其中:
- E [ r i ] E[r_i] E[ri]:资产 i i i 的预期收益率
- r f r_f rf:无风险利率
- E [ r m ] E[r_m] E[rm]:市场投资组合的预期收益率
- β i = Cov ( r i , r m ) Var ( r m ) \beta_i = \frac{\operatorname{Cov}(r_i, r_m)}{\operatorname{Var}(r_m)} βi=Var(rm)Cov(ri,rm):衡量资产 i i i 相对于市场波动的敏感度
2. 案例计算
例如:
假设
r
f
=
3
%
r_f=3\%
rf=3%,市场预期收益
E
[
r
m
]
=
8
%
E[r_m]=8\%
E[rm]=8%,某股票的
β
=
1.2
\beta=1.2
β=1.2。则该股票的预期收益为:
E
[
r
i
]
=
3
%
+
1.2
(
8
%
−
3
%
)
=
3
%
+
1.2
×
5
%
=
9
%
E[r_i] = 3\% + 1.2(8\%-3\%) = 3\% + 1.2 \times 5\% = 9\%
E[ri]=3%+1.2(8%−3%)=3%+1.2×5%=9%
三、VaR 与 CVaR
1. 定义
- VaR(Value at Risk,风险价值):在给定的置信水平下,预计投资组合在未来一段时间内最大可能出现的损失。例如,95% 的 VaR 表示有 95% 的概率损失不会超过该数值。
- CVaR(Conditional VaR,条件风险价值):在损失超过 VaR 水平时的预期损失,反映尾部风险。
2. 数学公式(基于正态分布假设)
假设投资组合收益率服从正态分布,平均收益为 μ p \mu_p μp、标准差为 σ p \sigma_p σp,置信水平为 $ \alpha $(例如 95%,则 1 − α = 5 % 1-\alpha=5\% 1−α=5%),标准正态分布下分位数为 z α z_\alpha zα(例如 z 0.05 ≈ − 1.645 z_{0.05} \approx -1.645 z0.05≈−1.645)。
- VaR(损失表示为正值):
VaR α = − ( μ p + σ p z α ) \text{VaR}_{\alpha} = -\left(\mu_p + \sigma_p z_\alpha\right) VaRα=−(μp+σpzα)
注意:这里 μ p + σ p z α \mu_p + \sigma_p z_\alpha μp+σpzα 往往为负,因此取负号使 VaR 为正,表示损失。 - CVaR:
对于正态分布,其公式为:
CVaR α = − ( μ p + σ p ϕ ( z α ) 1 − α ) \text{CVaR}_{\alpha} = -\left(\mu_p + \sigma_p \frac{\phi(z_\alpha)}{1-\alpha}\right) CVaRα=−(μp+σp1−αϕ(zα))
其中 ϕ ( z ) \phi(z) ϕ(z) 为标准正态概率密度函数。
3. 案例计算
假设某投资组合的年预期收益 μ p = 8 % \mu_p=8\% μp=8%(即0.08),标准差 σ p = 15 % \sigma_p=15\% σp=15%(即0.15),置信水平 95%,则 z 0.05 ≈ − 1.645 z_{0.05} \approx -1.645 z0.05≈−1.645,并设 ϕ ( − 1.645 ) ≈ 0.103 \phi(-1.645)\approx0.103 ϕ(−1.645)≈0.103。
- VaR:
VaR 95 % = − ( 0.08 + 0.15 × ( − 1.645 ) ) = − ( 0.08 − 0.24675 ) = 0.16675 ( ≈ 16.68 % ) \text{VaR}_{95\%} = -\left(0.08 + 0.15 \times (-1.645)\right) = -\left(0.08 - 0.24675\right) = 0.16675 \quad (\approx16.68\%) VaR95%=−(0.08+0.15×(−1.645))=−(0.08−0.24675)=0.16675(≈16.68%) - CVaR:
CVaR 95 % = − ( 0.08 + 0.15 × 0.103 0.05 ) = − ( 0.08 + 0.15 × 2.06 ) = − ( 0.08 + 0.309 ) = 0.389 ( ≈ 38.9 % ) \text{CVaR}_{95\%} = -\left(0.08 + 0.15 \times \frac{0.103}{0.05}\right) = -\left(0.08 + 0.15 \times 2.06\right) = -\left(0.08 + 0.309\right) = 0.389 \quad (\approx38.9\%) CVaR95%=−(0.08+0.15×0.050.103)=−(0.08+0.15×2.06)=−(0.08+0.309)=0.389(≈38.9%)
说明在 95% 置信水平下,该组合有 5% 的概率损失超过 16.68%,而在超过该值的情况下,平均损失约为 38.9%。
四、课堂活动
活动目标
- 投资组合优化
- 利用编程实现 Markowitz 投资组合优化,计算并绘制出有效前沿。
- 风险指标计算
- 计算给定投资组合的 VaR 与 CVaR,讨论其在风险管理中的意义。
活动安排
-
案例 1:投资组合优化
- 学生使用 Python 编写代码,利用历史数据或假设数据构建 4–5 个资产的预期收益率和协方差矩阵,求解不同目标收益下的最优组合,绘制出有效前沿图。
- 计算过程示例:
见下文“Python 代码实现示例 1”。
-
案例 2:风险指标计算
- 设定某投资组合的年收益率和波动率(例如 μ p = 8 % \mu_p=8\% μp=8%, σ p = 15 % \sigma_p=15\% σp=15%),计算 95% 置信水平下的 VaR 与 CVaR,比较并讨论其风险含义。
- 计算过程示例:
见下文“Python 代码实现示例 2”。
五、Python 代码实现示例
示例 1:投资组合优化与有效前沿
以下代码利用 cvxpy 求解 Markowitz 投资组合优化问题,并绘制有效前沿图(示例中设定 4 个资产的假设数据)。
import numpy as np
import matplotlib.pyplot as plt
import cvxpy as cp
# 假设数据:4 个资产的预期收益率和协方差矩阵
mu = np.array([0.10, 0.12, 0.14, 0.09])
Sigma = np.array([[0.005, -0.010, 0.004, -0.002],
[-0.010, 0.040, -0.002, 0.004],
[0.004, -0.002, 0.023, 0.002],
[-0.002, 0.004, 0.002, 0.010]])
n = len(mu)
# 设定目标收益率范围
target_returns = np.linspace(np.min(mu), np.max(mu), 50)
portfolio_risks = []
portfolio_weights = []
for target in target_returns:
w = cp.Variable(n)
portfolio_variance = cp.quad_form(w, Sigma)
objective = cp.Minimize(portfolio_variance)
constraints = [cp.sum(w) == 1,
mu @ w == target,
w >= 0]
prob = cp.Problem(objective, constraints)
prob.solve()
portfolio_risks.append(np.sqrt(portfolio_variance.value))
portfolio_weights.append(w.value)
# 绘制有效前沿图
plt.figure(figsize=(8, 6))
plt.plot(portfolio_risks, target_returns, 'b-', label="有效前沿")
plt.xlabel("组合风险(标准差)")
plt.ylabel("组合预期收益")
plt.title("Markowitz 有效前沿")
plt.legend()
plt.grid(True)
plt.show()
示例 2:VaR 与 CVaR 计算
以下代码利用正态分布假设计算某投资组合的 VaR 与 CVaR。
import scipy.stats as stats
def calculate_var_cvar(mu_p, sigma_p, confidence=0.95):
# 对于置信水平 (1 - confidence) 在左侧的分位数
z = stats.norm.ppf(1 - confidence) # 此值为负
VaR = - (mu_p + sigma_p * z) # 换算为正的损失值
CVaR = - (mu_p + sigma_p * stats.norm.pdf(z) / (1 - confidence))
return VaR, CVaR
# 假设投资组合参数:年预期收益 8%,年波动率 15%
mu_p = 0.08
sigma_p = 0.15
VaR, CVaR = calculate_var_cvar(mu_p, sigma_p, confidence=0.95)
print(f"投资组合 95% 置信水平 VaR = {VaR:.2%}")
print(f"投资组合 95% 置信水平 CVaR = {CVaR:.2%}")
运行结果(近似值)可能显示:
- VaR ≈ 16.68%
- CVaR ≈ 38.90%
示例 3:综合模拟(可选)
学生也可以结合历史数据或模拟生成投资组合收益分布,通过蒙特卡罗模拟计算 VaR 和 CVaR,并绘制收益分布图。
六、总结与讨论
- 投资组合理论:
- 通过 Markowitz 投资组合理论,学生掌握了如何在给定风险水平下选择最优组合,从而构建有效前沿。
- CAPM 模型:
- 通过 CAPM,学生了解了如何利用市场风险(Beta)解释资产的预期收益。
- 风险管理指标:
- 学习 VaR 和 CVaR 的计算方法,加深对风险控制的理解,认识到在风险管理中如何衡量尾部风险。
- 课堂活动:
- 通过编程实践,学生能够实现投资组合优化和风险指标计算,并讨论不同参数对投资组合表现及风险管理策略的影响。
通过本课的学习,不仅掌握了投资组合优化与风险管理的基本理论,还能够利用 Python 进行实际计算和模拟,为后续的投资决策和风险管理实践打下坚实基础。