投资组合理论与风险管理

投资组合理论与风险管理

一、Markowitz 投资组合理论

1. 理论概述
  • 目标
    Markowitz 投资组合理论(均值—方差模型)旨在通过分散化投资实现风险与收益的最佳权衡。
  • 基本概念
    • 投资组合的预期收益
      E [ R p ] = ∑ i = 1 n w i r i E[R_p] = \sum_{i=1}^n w_i r_i E[Rp]=i=1nwiri
      其中, w i w_i wi 为第 i i i 个资产的权重, r i r_i ri 为其预期收益。
    • 投资组合的风险(方差或标准差)
      σ p 2 = w T Σ   w \sigma_p^2 = \mathbf{w}^T \Sigma\, \mathbf{w} σp2=wTΣw
      其中, Σ \Sigma Σ 为资产收益率的协方差矩阵。
  • 有效前沿
    在所有可能的投资组合中,有效前沿代表那些在给定风险水平下能实现最高预期收益的组合。
    数学上,我们可以通过求解下面的最优化问题获得有效前沿:
    min ⁡ w w T Σ   w (最小化风险) \min_{\mathbf{w}} \quad \mathbf{w}^T \Sigma\, \mathbf{w} \quad \text{(最小化风险)} wminwTΣw(最小化风险)
    约束条件:
    ∑ i = 1 n w i = 1 , ∑ i = 1 n w i r i = R target , w i ≥ 0 ( i = 1 , … , n ) \sum_{i=1}^{n} w_i = 1,\quad \sum_{i=1}^{n} w_i r_i = R_{\text{target}},\quad w_i \ge 0 \quad (i=1,\ldots,n) i=1nwi=1,i=1nwiri=Rtarget,wi0(i=1,,n)
2. 案例练习:二资产组合

假设有两只资产,其预期收益分别为 10% 和 20%,协方差矩阵为:
Σ = ( 0.005 0.001 0.001 0.010 ) \Sigma = \begin{pmatrix} 0.005 & 0.001 \\ 0.001 & 0.010 \end{pmatrix} Σ=(0.0050.0010.0010.010)
令资产 1 的权重为 w w w,则资产 2 权重为 1 − w 1-w 1w;组合预期收益为:
E [ R p ] = w × 0.10 + ( 1 − w ) × 0.20 = 0.20 − 0.10 w E[R_p] = w \times 0.10 + (1-w) \times 0.20 = 0.20 - 0.10w E[Rp]=w×0.10+(1w)×0.20=0.200.10w
组合方差为:
σ p 2 = w 2 ⋅ 0.005 + ( 1 − w ) 2 ⋅ 0.010 + 2 w ( 1 − w ) ⋅ 0.001 \sigma_p^2 = w^2 \cdot 0.005 + (1-w)^2 \cdot 0.010 + 2w(1-w)\cdot 0.001 σp2=w20.005+(1w)20.010+2w(1w)0.001
通过对不同目标收益 R target R_{\text{target}} Rtarget 选择合适的 w w w(或者直接利用数值方法求解),我们可以得到有效前沿上各组合的风险与收益关系。


二、CAPM 模型

1. 模型定义

资本资产定价模型(CAPM)描述了资产的预期收益与其系统性风险之间的关系。公式为:
E [ r i ] = r f + β i ( E [ r m ] − r f ) E[r_i] = r_f + \beta_i (E[r_m] - r_f) E[ri]=rf+βi(E[rm]rf)
其中:

  • E [ r i ] E[r_i] E[ri]:资产 i i i 的预期收益率
  • r f r_f rf:无风险利率
  • E [ r m ] E[r_m] E[rm]:市场投资组合的预期收益率
  • β i = Cov ⁡ ( r i , r m ) Var ⁡ ( r m ) \beta_i = \frac{\operatorname{Cov}(r_i, r_m)}{\operatorname{Var}(r_m)} βi=Var(rm)Cov(ri,rm):衡量资产 i i i 相对于市场波动的敏感度
2. 案例计算

例如:
假设 r f = 3 % r_f=3\% rf=3%,市场预期收益 E [ r m ] = 8 % E[r_m]=8\% E[rm]=8%,某股票的 β = 1.2 \beta=1.2 β=1.2。则该股票的预期收益为:
E [ r i ] = 3 % + 1.2 ( 8 % − 3 % ) = 3 % + 1.2 × 5 % = 9 % E[r_i] = 3\% + 1.2(8\%-3\%) = 3\% + 1.2 \times 5\% = 9\% E[ri]=3%+1.2(8%3%)=3%+1.2×5%=9%


三、VaR 与 CVaR

1. 定义
  • VaR(Value at Risk,风险价值):在给定的置信水平下,预计投资组合在未来一段时间内最大可能出现的损失。例如,95% 的 VaR 表示有 95% 的概率损失不会超过该数值。
  • CVaR(Conditional VaR,条件风险价值):在损失超过 VaR 水平时的预期损失,反映尾部风险。
2. 数学公式(基于正态分布假设)

假设投资组合收益率服从正态分布,平均收益为 μ p \mu_p μp、标准差为 σ p \sigma_p σp,置信水平为 $ \alpha $(例如 95%,则 1 − α = 5 % 1-\alpha=5\% 1α=5%),标准正态分布下分位数为 z α z_\alpha zα(例如 z 0.05 ≈ − 1.645 z_{0.05} \approx -1.645 z0.051.645)。

  • VaR(损失表示为正值):
    VaR α = − ( μ p + σ p z α ) \text{VaR}_{\alpha} = -\left(\mu_p + \sigma_p z_\alpha\right) VaRα=(μp+σpzα)
    注意:这里 μ p + σ p z α \mu_p + \sigma_p z_\alpha μp+σpzα 往往为负,因此取负号使 VaR 为正,表示损失。
  • CVaR
    对于正态分布,其公式为:
    CVaR α = − ( μ p + σ p ϕ ( z α ) 1 − α ) \text{CVaR}_{\alpha} = -\left(\mu_p + \sigma_p \frac{\phi(z_\alpha)}{1-\alpha}\right) CVaRα=(μp+σp1αϕ(zα))
    其中 ϕ ( z ) \phi(z) ϕ(z) 为标准正态概率密度函数。
3. 案例计算

假设某投资组合的年预期收益 μ p = 8 % \mu_p=8\% μp=8%(即0.08),标准差 σ p = 15 % \sigma_p=15\% σp=15%(即0.15),置信水平 95%,则 z 0.05 ≈ − 1.645 z_{0.05} \approx -1.645 z0.051.645,并设 ϕ ( − 1.645 ) ≈ 0.103 \phi(-1.645)\approx0.103 ϕ(1.645)0.103

  • VaR
    VaR 95 % = − ( 0.08 + 0.15 × ( − 1.645 ) ) = − ( 0.08 − 0.24675 ) = 0.16675 ( ≈ 16.68 % ) \text{VaR}_{95\%} = -\left(0.08 + 0.15 \times (-1.645)\right) = -\left(0.08 - 0.24675\right) = 0.16675 \quad (\approx16.68\%) VaR95%=(0.08+0.15×(1.645))=(0.080.24675)=0.16675(16.68%)
  • CVaR
    CVaR 95 % = − ( 0.08 + 0.15 × 0.103 0.05 ) = − ( 0.08 + 0.15 × 2.06 ) = − ( 0.08 + 0.309 ) = 0.389 ( ≈ 38.9 % ) \text{CVaR}_{95\%} = -\left(0.08 + 0.15 \times \frac{0.103}{0.05}\right) = -\left(0.08 + 0.15 \times 2.06\right) = -\left(0.08 + 0.309\right) = 0.389 \quad (\approx38.9\%) CVaR95%=(0.08+0.15×0.050.103)=(0.08+0.15×2.06)=(0.08+0.309)=0.389(38.9%)

说明在 95% 置信水平下,该组合有 5% 的概率损失超过 16.68%,而在超过该值的情况下,平均损失约为 38.9%。


四、课堂活动

活动目标
  1. 投资组合优化
    • 利用编程实现 Markowitz 投资组合优化,计算并绘制出有效前沿。
  2. 风险指标计算
    • 计算给定投资组合的 VaR 与 CVaR,讨论其在风险管理中的意义。
活动安排
  1. 案例 1:投资组合优化

    • 学生使用 Python 编写代码,利用历史数据或假设数据构建 4–5 个资产的预期收益率和协方差矩阵,求解不同目标收益下的最优组合,绘制出有效前沿图。
    • 计算过程示例
      见下文“Python 代码实现示例 1”。
  2. 案例 2:风险指标计算

    • 设定某投资组合的年收益率和波动率(例如 μ p = 8 % \mu_p=8\% μp=8% σ p = 15 % \sigma_p=15\% σp=15%),计算 95% 置信水平下的 VaR 与 CVaR,比较并讨论其风险含义。
    • 计算过程示例
      见下文“Python 代码实现示例 2”。

五、Python 代码实现示例

示例 1:投资组合优化与有效前沿

以下代码利用 cvxpy 求解 Markowitz 投资组合优化问题,并绘制有效前沿图(示例中设定 4 个资产的假设数据)。

import numpy as np
import matplotlib.pyplot as plt
import cvxpy as cp

# 假设数据:4 个资产的预期收益率和协方差矩阵
mu = np.array([0.10, 0.12, 0.14, 0.09])
Sigma = np.array([[0.005, -0.010, 0.004, -0.002],
                  [-0.010, 0.040, -0.002, 0.004],
                  [0.004, -0.002, 0.023, 0.002],
                  [-0.002, 0.004, 0.002, 0.010]])
n = len(mu)

# 设定目标收益率范围
target_returns = np.linspace(np.min(mu), np.max(mu), 50)
portfolio_risks = []
portfolio_weights = []

for target in target_returns:
    w = cp.Variable(n)
    portfolio_variance = cp.quad_form(w, Sigma)
    objective = cp.Minimize(portfolio_variance)
    constraints = [cp.sum(w) == 1,
                   mu @ w == target,
                   w >= 0]
    prob = cp.Problem(objective, constraints)
    prob.solve()
    portfolio_risks.append(np.sqrt(portfolio_variance.value))
    portfolio_weights.append(w.value)

# 绘制有效前沿图
plt.figure(figsize=(8, 6))
plt.plot(portfolio_risks, target_returns, 'b-', label="有效前沿")
plt.xlabel("组合风险(标准差)")
plt.ylabel("组合预期收益")
plt.title("Markowitz 有效前沿")
plt.legend()
plt.grid(True)
plt.show()
示例 2:VaR 与 CVaR 计算

以下代码利用正态分布假设计算某投资组合的 VaR 与 CVaR。

import scipy.stats as stats

def calculate_var_cvar(mu_p, sigma_p, confidence=0.95):
    # 对于置信水平 (1 - confidence) 在左侧的分位数
    z = stats.norm.ppf(1 - confidence)  # 此值为负
    VaR = - (mu_p + sigma_p * z)        # 换算为正的损失值
    CVaR = - (mu_p + sigma_p * stats.norm.pdf(z) / (1 - confidence))
    return VaR, CVaR

# 假设投资组合参数:年预期收益 8%,年波动率 15%
mu_p = 0.08
sigma_p = 0.15
VaR, CVaR = calculate_var_cvar(mu_p, sigma_p, confidence=0.95)

print(f"投资组合 95% 置信水平 VaR = {VaR:.2%}")
print(f"投资组合 95% 置信水平 CVaR = {CVaR:.2%}")

运行结果(近似值)可能显示:

  • VaR ≈ 16.68%
  • CVaR ≈ 38.90%
示例 3:综合模拟(可选)

学生也可以结合历史数据或模拟生成投资组合收益分布,通过蒙特卡罗模拟计算 VaR 和 CVaR,并绘制收益分布图。


六、总结与讨论

  1. 投资组合理论
    • 通过 Markowitz 投资组合理论,学生掌握了如何在给定风险水平下选择最优组合,从而构建有效前沿。
  2. CAPM 模型
    • 通过 CAPM,学生了解了如何利用市场风险(Beta)解释资产的预期收益。
  3. 风险管理指标
    • 学习 VaR 和 CVaR 的计算方法,加深对风险控制的理解,认识到在风险管理中如何衡量尾部风险。
  4. 课堂活动
    • 通过编程实践,学生能够实现投资组合优化和风险指标计算,并讨论不同参数对投资组合表现及风险管理策略的影响。

通过本课的学习,不仅掌握了投资组合优化与风险管理的基本理论,还能够利用 Python 进行实际计算和模拟,为后续的投资决策和风险管理实践打下坚实基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值