Lebesgue积分的多维扩展与Fubini定理
1. 引言部分:概述与背景
-
目标: 通过讲解Lebesgue积分的多维扩展和Fubini定理,帮助学生掌握如何在多维空间中对Lebesgue积分进行操作,并理解如何通过交换积分顺序简化计算。
-
简介:
- Lebesgue积分:相较于Riemann积分,Lebesgue积分更适用于处理复杂的、不规则的函数和测度空间。在多维情况下,我们需要了解如何处理多个变量和复杂的区域。
- Fubini定理:Fubini定理提供了在多维积分中交换积分顺序的条件和方法。这个定理是解决多重积分问题的重要工具,能帮助我们简化计算过程。
2. 多维Lebesgue积分
- 定义与公式:
-
对于一维Lebesgue积分,我们已经熟悉其形式:
∫ a b f ( x ) d x \int_a^b f(x) \, dx ∫abf(x)dx -
对于多维Lebesgue积分,假设我们有一个函数 f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:Rn→R(定义在n维空间),其Lebesgue积分定义为:
∫ R n f ( x 1 , x 2 , … , x n ) d μ ( x 1 , x 2 , … , x n ) \int_{\mathbb{R}^n} f(x_1, x_2, \dots, x_n) \, d\mu(x_1, x_2, \dots, x_n) ∫Rnf(x1,x2,…,xn)dμ(x1,x2,…,xn)
其中, μ \mu μ是n维Lebesgue测度。 -
例子1:二维Lebesgue积分:
设 f ( x , y ) = x y f(x, y) = xy f(x,y)=xy,求其在区域 R = [ 0 , 1 ] × [ 0 , 1 ] R = [0, 1] \times [0, 1] R=[0,1]×[0,1] 上的Lebesgue积分。
∫ 0 1 ∫ 0 1 x y d y d x \int_0^1 \int_0^1 xy \, dy \, dx ∫01∫01xydydx
计算过程:
∫ 0 1 ( ∫ 0 1 x y d y ) d x = ∫ 0 1 [ x ⋅ y 2 2 ∣ 0 1 ] d x = ∫ 0 1 x 2 d x = x 2 4 ∣ 0 1 = 1 4 \int_0^1 \left( \int_0^1 xy \, dy \right) dx = \int_0^1 \left[ x \cdot \frac{y^2}{2} \Big|_0^1 \right] dx = \int_0^1 \frac{x}{2} \, dx = \frac{x^2}{4} \Big|_0^1 = \frac{1}{4} ∫01(∫01xydy)dx=∫01[x⋅2y2 01]dx=∫012xdx=4x2 01=41
答案: 1 4 \frac{1}{4} 41
-
3. Fubini定理
-
Fubini定理的陈述:
- 设
f
(
x
,
y
)
f(x, y)
f(x,y) 是可积的(即
∫
∫
∣
f
(
x
,
y
)
∣
d
A
<
∞
\int \int |f(x, y)| dA < \infty
∫∫∣f(x,y)∣dA<∞),则有:
∫ ∫ f ( x , y ) d x d y = ∫ ( ∫ f ( x , y ) d y ) d x = ∫ ( ∫ f ( x , y ) d x ) d y \int \int f(x, y) \, dx \, dy = \int \left( \int f(x, y) \, dy \right) dx = \int \left( \int f(x, y) \, dx \right) dy ∫∫f(x,y)dxdy=∫(∫f(x,y)dy)dx=∫(∫f(x,y)dx)dy
即,可以交换积分的顺序。
- 设
f
(
x
,
y
)
f(x, y)
f(x,y) 是可积的(即
∫
∫
∣
f
(
x
,
y
)
∣
d
A
<
∞
\int \int |f(x, y)| dA < \infty
∫∫∣f(x,y)∣dA<∞),则有:
-
Fubini定理的应用实例:
- 设
f
(
x
,
y
)
=
e
−
x
2
−
y
2
f(x, y) = e^{-x^2 - y^2}
f(x,y)=e−x2−y2,求其在区域
[
0
,
∞
)
×
[
0
,
∞
)
[0, \infty) \times [0, \infty)
[0,∞)×[0,∞) 上的积分。
∫ 0 ∞ ∫ 0 ∞ e − x 2 − y 2 d y d x \int_0^\infty \int_0^\infty e^{-x^2 - y^2} \, dy \, dx ∫0∞∫0∞e−x2−y2dydx
由于 f ( x , y ) f(x, y) f(x,y) 是可积的,可以应用Fubini定理交换积分顺序:
∫ 0 ∞ ( ∫ 0 ∞ e − x 2 − y 2 d x ) d y = ∫ 0 ∞ ( ∫ 0 ∞ e − x 2 d x ) e − y 2 d y \int_0^\infty \left( \int_0^\infty e^{-x^2 - y^2} \, dx \right) dy = \int_0^\infty \left( \int_0^\infty e^{-x^2} \, dx \right) e^{-y^2} \, dy ∫0∞(∫0∞e−x2−y2dx)dy=∫0∞(∫0∞e−x2dx)e−y2dy
我们首先计算内层积分:
∫ 0 ∞ e − x 2 d x = π 2 \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} ∫0∞e−x2dx=2π
然后计算外层积分:
∫ 0 ∞ e − y 2 d y = π 2 \int_0^\infty e^{-y^2} \, dy = \frac{\sqrt{\pi}}{2} ∫0∞e−y2dy=2π
因此,整个积分为:
π 2 × π 2 = π 4 \frac{\sqrt{\pi}}{2} \times \frac{\sqrt{\pi}}{2} = \frac{\pi}{4} 2π×2π=4π
答案: π 4 \frac{\pi}{4} 4π
- 设
f
(
x
,
y
)
=
e
−
x
2
−
y
2
f(x, y) = e^{-x^2 - y^2}
f(x,y)=e−x2−y2,求其在区域
[
0
,
∞
)
×
[
0
,
∞
)
[0, \infty) \times [0, \infty)
[0,∞)×[0,∞) 上的积分。
4. 课堂活动:多维Lebesgue积分与Fubini定理的实际应用
-
案例1:
设 f ( x , y ) = sin ( x ) cos ( y ) f(x, y) = \sin(x) \cos(y) f(x,y)=sin(x)cos(y),计算其在区域 [ 0 , π ] × [ 0 , π ] [0, \pi] \times [0, \pi] [0,π]×[0,π] 上的Lebesgue积分。
∫ 0 π ∫ 0 π sin ( x ) cos ( y ) d y d x \int_0^\pi \int_0^\pi \sin(x) \cos(y) \, dy \, dx ∫0π∫0πsin(x)cos(y)dydx
通过Fubini定理交换积分顺序:
∫ 0 π ( ∫ 0 π sin ( x ) cos ( y ) d y ) d x = ∫ 0 π sin ( x ) ( ∫ 0 π cos ( y ) d y ) d x \int_0^\pi \left( \int_0^\pi \sin(x) \cos(y) \, dy \right) dx = \int_0^\pi \sin(x) \left( \int_0^\pi \cos(y) \, dy \right) dx ∫0π(∫0πsin(x)cos(y)dy)dx=∫0πsin(x)(∫0πcos(y)dy)dx
计算内层积分:
∫ 0 π cos ( y ) d y = sin ( y ) ∣ 0 π = 0 \int_0^\pi \cos(y) \, dy = \sin(y) \Big|_0^\pi = 0 ∫0πcos(y)dy=sin(y) 0π=0
因此,整个积分的结果为0。
答案: 0 -
案例2:
设 f ( x , y , z ) = x 2 y + y z 2 f(x, y, z) = x^2 y + yz^2 f(x,y,z)=x2y+yz2,计算其在 [ 0 , 1 ] × [ 0 , 1 ] × [ 0 , 1 ] [0, 1] \times [0, 1] \times [0, 1] [0,1]×[0,1]×[0,1] 上的Lebesgue积分。
∫ 0 1 ∫ 0 1 ∫ 0 1 ( x 2 y + y z 2 ) d z d y d x \int_0^1 \int_0^1 \int_0^1 (x^2 y + yz^2) \, dz \, dy \, dx ∫01∫01∫01(x2y+yz2)dzdydx
通过Fubini定理,分别计算每一项。对 x 2 y x^2 y x2y:
∫ 0 1 ∫ 0 1 ∫ 0 1 x 2 y d z d y d x = ∫ 0 1 ∫ 0 1 x 2 y d y d x = ∫ 0 1 x 2 ( y 2 2 ∣ 0 1 ) d x = 1 2 ∫ 0 1 x 2 d x = 1 2 ⋅ x 3 3 ∣ 0 1 = 1 6 \int_0^1 \int_0^1 \int_0^1 x^2 y \, dz \, dy \, dx = \int_0^1 \int_0^1 x^2 y \, dy \, dx = \int_0^1 x^2 \left( \frac{y^2}{2} \Big|_0^1 \right) dx = \frac{1}{2} \int_0^1 x^2 \, dx = \frac{1}{2} \cdot \frac{x^3}{3} \Big|_0^1 = \frac{1}{6} ∫01∫01∫01x2ydzdydx=∫01∫01x2ydydx=∫01x2(2y2 01)dx=21∫01x2dx=21⋅3x3 01=61对 y z 2 yz^2 yz2:
∫ 0 1 ∫ 0 1 ∫ 0 1 y z 2 d z d y d x = ∫ 0 1 ∫ 0 1 y ( z 3 3 ∣ 0 1 ) d y = 1 3 ∫ 0 1 y d y = 1 3 ⋅ y 2 2 ∣ 0 1 = 1 6 \int_0^1 \int_0^1 \int_0^1 yz^2 \, dz \, dy \, dx = \int_0^1 \int_0^1 y \left( \frac{z^3}{3} \Big|_0^1 \right) dy = \frac{1}{3} \int_0^1 y \, dy = \frac{1}{3} \cdot \frac{y^2}{2} \Big|_0^1 = \frac{1}{6} ∫01∫01∫01yz2dzdydx=∫01∫01y(3z3 01)dy=31∫01ydy=31⋅2y2 01=61所以,最终结果是:
1 6 + 1 6 = 1 3 \frac{1}{6} + \frac{1}{6} = \frac{1}{3} 61+61=31
答案: 1 3 \frac{1}{3} 31
5. Python代码实现示例:计算多维Lebesgue积分
import scipy.integrate as spi
import numpy as np
# 定义被积函数 f(x, y) = x * y
def f(x, y):
return x * y
# 设置积分区域 [0, 1] x [0, 1]
result, error = spi.dblquad(f, 0, 1, 0, 1)
print(f"积分结果: {result}, 误差估计: {error}")
6. 总结与提问
-
总结本节内容的重点:
- 多维Lebesgue积分的概念与计算。
- Fubini定理的应用与如何简化多重积分。
-
提问学生:
- 你能理解Fubini定理是如何在实际问题中简化计算的吗?
- 你能举出其他适用Fubini定理的实际例子吗?
通过本节课的讲解,应能够掌握多维Lebesgue积分的计算技巧,并且能够灵活应用Fubini定理进行多重积分的计算。