Lebesgue积分的多维扩展与Fubini定理

Lebesgue积分的多维扩展与Fubini定理

1. 引言部分:概述与背景
  • 目标: 通过讲解Lebesgue积分的多维扩展和Fubini定理,帮助学生掌握如何在多维空间中对Lebesgue积分进行操作,并理解如何通过交换积分顺序简化计算。

  • 简介:

    • Lebesgue积分:相较于Riemann积分,Lebesgue积分更适用于处理复杂的、不规则的函数和测度空间。在多维情况下,我们需要了解如何处理多个变量和复杂的区域。
    • Fubini定理:Fubini定理提供了在多维积分中交换积分顺序的条件和方法。这个定理是解决多重积分问题的重要工具,能帮助我们简化计算过程。
2. 多维Lebesgue积分
  • 定义与公式:
    • 对于一维Lebesgue积分,我们已经熟悉其形式:
      ∫ a b f ( x )   d x \int_a^b f(x) \, dx abf(x)dx

    • 对于多维Lebesgue积分,假设我们有一个函数 f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR(定义在n维空间),其Lebesgue积分定义为:
      ∫ R n f ( x 1 , x 2 , … , x n )   d μ ( x 1 , x 2 , … , x n ) \int_{\mathbb{R}^n} f(x_1, x_2, \dots, x_n) \, d\mu(x_1, x_2, \dots, x_n) Rnf(x1,x2,,xn)dμ(x1,x2,,xn)
      其中, μ \mu μ是n维Lebesgue测度。

    • 例子1:二维Lebesgue积分
      f ( x , y ) = x y f(x, y) = xy f(x,y)=xy,求其在区域 R = [ 0 , 1 ] × [ 0 , 1 ] R = [0, 1] \times [0, 1] R=[0,1]×[0,1] 上的Lebesgue积分。
      ∫ 0 1 ∫ 0 1 x y   d y   d x \int_0^1 \int_0^1 xy \, dy \, dx 0101xydydx
      计算过程:
      ∫ 0 1 ( ∫ 0 1 x y   d y ) d x = ∫ 0 1 [ x ⋅ y 2 2 ∣ 0 1 ] d x = ∫ 0 1 x 2   d x = x 2 4 ∣ 0 1 = 1 4 \int_0^1 \left( \int_0^1 xy \, dy \right) dx = \int_0^1 \left[ x \cdot \frac{y^2}{2} \Big|_0^1 \right] dx = \int_0^1 \frac{x}{2} \, dx = \frac{x^2}{4} \Big|_0^1 = \frac{1}{4} 01(01xydy)dx=01[x2y2 01]dx=012xdx=4x2 01=41
      答案: 1 4 \frac{1}{4} 41

3. Fubini定理
  • Fubini定理的陈述:

    • f ( x , y ) f(x, y) f(x,y) 是可积的(即 ∫ ∫ ∣ f ( x , y ) ∣ d A < ∞ \int \int |f(x, y)| dA < \infty ∫∫f(x,y)dA<),则有:
      ∫ ∫ f ( x , y )   d x   d y = ∫ ( ∫ f ( x , y )   d y ) d x = ∫ ( ∫ f ( x , y )   d x ) d y \int \int f(x, y) \, dx \, dy = \int \left( \int f(x, y) \, dy \right) dx = \int \left( \int f(x, y) \, dx \right) dy ∫∫f(x,y)dxdy=(f(x,y)dy)dx=(f(x,y)dx)dy
      即,可以交换积分的顺序。
  • Fubini定理的应用实例:

    • f ( x , y ) = e − x 2 − y 2 f(x, y) = e^{-x^2 - y^2} f(x,y)=ex2y2,求其在区域 [ 0 , ∞ ) × [ 0 , ∞ ) [0, \infty) \times [0, \infty) [0,)×[0,) 上的积分。
      ∫ 0 ∞ ∫ 0 ∞ e − x 2 − y 2   d y   d x \int_0^\infty \int_0^\infty e^{-x^2 - y^2} \, dy \, dx 00ex2y2dydx
      由于 f ( x , y ) f(x, y) f(x,y) 是可积的,可以应用Fubini定理交换积分顺序:
      ∫ 0 ∞ ( ∫ 0 ∞ e − x 2 − y 2   d x ) d y = ∫ 0 ∞ ( ∫ 0 ∞ e − x 2   d x ) e − y 2   d y \int_0^\infty \left( \int_0^\infty e^{-x^2 - y^2} \, dx \right) dy = \int_0^\infty \left( \int_0^\infty e^{-x^2} \, dx \right) e^{-y^2} \, dy 0(0ex2y2dx)dy=0(0ex2dx)ey2dy
      我们首先计算内层积分:
      ∫ 0 ∞ e − x 2   d x = π 2 \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2} 0ex2dx=2π
      然后计算外层积分:
      ∫ 0 ∞ e − y 2   d y = π 2 \int_0^\infty e^{-y^2} \, dy = \frac{\sqrt{\pi}}{2} 0ey2dy=2π
      因此,整个积分为:
      π 2 × π 2 = π 4 \frac{\sqrt{\pi}}{2} \times \frac{\sqrt{\pi}}{2} = \frac{\pi}{4} 2π ×2π =4π
      答案: π 4 \frac{\pi}{4} 4π
4. 课堂活动:多维Lebesgue积分与Fubini定理的实际应用
  • 案例1:
    f ( x , y ) = sin ⁡ ( x ) cos ⁡ ( y ) f(x, y) = \sin(x) \cos(y) f(x,y)=sin(x)cos(y),计算其在区域 [ 0 , π ] × [ 0 , π ] [0, \pi] \times [0, \pi] [0,π]×[0,π] 上的Lebesgue积分。
    ∫ 0 π ∫ 0 π sin ⁡ ( x ) cos ⁡ ( y )   d y   d x \int_0^\pi \int_0^\pi \sin(x) \cos(y) \, dy \, dx 0π0πsin(x)cos(y)dydx
    通过Fubini定理交换积分顺序:
    ∫ 0 π ( ∫ 0 π sin ⁡ ( x ) cos ⁡ ( y )   d y ) d x = ∫ 0 π sin ⁡ ( x ) ( ∫ 0 π cos ⁡ ( y )   d y ) d x \int_0^\pi \left( \int_0^\pi \sin(x) \cos(y) \, dy \right) dx = \int_0^\pi \sin(x) \left( \int_0^\pi \cos(y) \, dy \right) dx 0π(0πsin(x)cos(y)dy)dx=0πsin(x)(0πcos(y)dy)dx
    计算内层积分:
    ∫ 0 π cos ⁡ ( y )   d y = sin ⁡ ( y ) ∣ 0 π = 0 \int_0^\pi \cos(y) \, dy = \sin(y) \Big|_0^\pi = 0 0πcos(y)dy=sin(y) 0π=0
    因此,整个积分的结果为0。
    答案: 0

  • 案例2:
    f ( x , y , z ) = x 2 y + y z 2 f(x, y, z) = x^2 y + yz^2 f(x,y,z)=x2y+yz2,计算其在 [ 0 , 1 ] × [ 0 , 1 ] × [ 0 , 1 ] [0, 1] \times [0, 1] \times [0, 1] [0,1]×[0,1]×[0,1] 上的Lebesgue积分。
    ∫ 0 1 ∫ 0 1 ∫ 0 1 ( x 2 y + y z 2 )   d z   d y   d x \int_0^1 \int_0^1 \int_0^1 (x^2 y + yz^2) \, dz \, dy \, dx 010101(x2y+yz2)dzdydx
    通过Fubini定理,分别计算每一项。

    x 2 y x^2 y x2y
    ∫ 0 1 ∫ 0 1 ∫ 0 1 x 2 y   d z   d y   d x = ∫ 0 1 ∫ 0 1 x 2 y   d y   d x = ∫ 0 1 x 2 ( y 2 2 ∣ 0 1 ) d x = 1 2 ∫ 0 1 x 2   d x = 1 2 ⋅ x 3 3 ∣ 0 1 = 1 6 \int_0^1 \int_0^1 \int_0^1 x^2 y \, dz \, dy \, dx = \int_0^1 \int_0^1 x^2 y \, dy \, dx = \int_0^1 x^2 \left( \frac{y^2}{2} \Big|_0^1 \right) dx = \frac{1}{2} \int_0^1 x^2 \, dx = \frac{1}{2} \cdot \frac{x^3}{3} \Big|_0^1 = \frac{1}{6} 010101x2ydzdydx=0101x2ydydx=01x2(2y2 01)dx=2101x2dx=213x3 01=61

    y z 2 yz^2 yz2
    ∫ 0 1 ∫ 0 1 ∫ 0 1 y z 2   d z   d y   d x = ∫ 0 1 ∫ 0 1 y ( z 3 3 ∣ 0 1 ) d y = 1 3 ∫ 0 1 y   d y = 1 3 ⋅ y 2 2 ∣ 0 1 = 1 6 \int_0^1 \int_0^1 \int_0^1 yz^2 \, dz \, dy \, dx = \int_0^1 \int_0^1 y \left( \frac{z^3}{3} \Big|_0^1 \right) dy = \frac{1}{3} \int_0^1 y \, dy = \frac{1}{3} \cdot \frac{y^2}{2} \Big|_0^1 = \frac{1}{6} 010101yz2dzdydx=0101y(3z3 01)dy=3101ydy=312y2 01=61

    所以,最终结果是:
    1 6 + 1 6 = 1 3 \frac{1}{6} + \frac{1}{6} = \frac{1}{3} 61+61=31
    答案: 1 3 \frac{1}{3} 31

5. Python代码实现示例:计算多维Lebesgue积分
import scipy.integrate as spi
import numpy as np

# 定义被积函数 f(x, y) = x * y
def f(x, y):
    return x * y

# 设置积分区域 [0, 1] x [0, 1]
result, error = spi.dblquad(f, 0, 1, 0, 1)

print(f"积分结果: {result}, 误差估计: {error}")
6. 总结与提问
  • 总结本节内容的重点:

    • 多维Lebesgue积分的概念与计算。
    • Fubini定理的应用与如何简化多重积分。
  • 提问学生:

    • 你能理解Fubini定理是如何在实际问题中简化计算的吗?
    • 你能举出其他适用Fubini定理的实际例子吗?

通过本节课的讲解,应能够掌握多维Lebesgue积分的计算技巧,并且能够灵活应用Fubini定理进行多重积分的计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值