3.28

一、数据挖掘项目

sns.FacetGrid( )

Facegird是实现seaborn中绘制多个图形的接口。可用来将不同变量数据绘制到同一个图中,也可以绘制多个图形。Facegird基本的工作流程是使用数据集和用于构造网格的变量来初始化对象。然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集 FacetGrid.map_dataframe()。

可视化库-seaborn-Facetgrid(第五天) - python我的最爱 - 博客园 (cnblogs.com)https://www.cnblogs.com/my-love-is-python/p/10246428.html

每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

seaborn.set()

函数参数:seaborn.set(context=‘notebook’, style=‘darkgrid’, palette=‘deep’, font=‘sans-serif’, font_scale=1, color_codes=True, rc=None)
从这个set()函数,可以看出,通过它我们可以设置背景色、风格、字型、字体等。

 

sns.pairplot( )

pairplot绘制的是成对的变量关系图表。这就说明,我们在做相关的数据分析探索的时候,用seaborn.pairplot()不仅可以绘制特征变量和预测变量关系,还可以绘制特征变量间的关系。

参数

kind: {‘scatter’, ‘kde’, ‘hist’, ‘reg’}

kind表示联合分布图中非对角线图的类型

'reg'代表在图片中加入一条拟合直线,

'scatter'就是不加入这条直线,

'kde'是等高线的形式,

'hist'就是类似于栅格地图的形式;

diag_kind: {‘auto’, ‘hist’, ‘kde’, None}

'hist'代表直方图,

'kde'代表直方图曲线化。

图像的对角线不同,因为是单变量,所以显示的是单变量的分布。

Seaborn-05-Pairplot多变量图 - 简书 (jianshu.com)

matplotlib,sns基础

在这里插入图片描述

 image-20200830213820286

创建一个空白的画布时,建议使用:

fig,ax = plt.subplots()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值