一、数据挖掘项目
sns.FacetGrid( )
Facegird是实现seaborn中绘制多个图形的接口。可用来将不同变量数据绘制到同一个图中,也可以绘制多个图形。Facegird基本的工作流程是使用数据集和用于构造网格的变量来初始化对象。然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集 FacetGrid.map_dataframe()。
每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
seaborn.set()
函数参数:seaborn.set(context=‘notebook’, style=‘darkgrid’, palette=‘deep’, font=‘sans-serif’, font_scale=1, color_codes=True, rc=None)
从这个set()函数,可以看出,通过它我们可以设置背景色、风格、字型、字体等。
sns.pairplot( )
pairplot绘制的是成对的变量关系图表。这就说明,我们在做相关的数据分析探索的时候,用seaborn.pairplot()不仅可以绘制特征变量和预测变量关系,还可以绘制特征变量间的关系。
参数
kind: {‘scatter’, ‘kde’, ‘hist’, ‘reg’}
kind
表示联合分布图中非对角线图的类型
'reg'
代表在图片中加入一条拟合直线,
'scatter'
就是不加入这条直线,
'kde'
是等高线的形式,
'hist'
就是类似于栅格地图的形式;
diag_kind: {‘auto’, ‘hist’, ‘kde’, None}
'hist'
代表直方图,
'kde'
代表直方图曲线化。
图像的对角线不同,因为是单变量,所以显示的是单变量的分布。
Seaborn-05-Pairplot多变量图 - 简书 (jianshu.com)
matplotlib,sns基础
在创建一个空白的画布时,建议使用:
fig,ax = plt.subplots()