机器学习(四)——用解析解的方式求解模型

本文介绍了机器学习中的最大似然估计原理,通过中心极限定理来理解数据分布,并详细阐述了概率密度函数、损失函数的概念。接着,文章通过解析解的方式解释了线性回归的优化过程,最终给出了使用代码实现解析解的示例,包括直接实现和使用sklearn库的简化方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大似然估计

在这里插入图片描述
通俗来讲:假设你有一组身高的数据,有两个正态分布(踢足球的和打篮球的),打篮球的正态分布肯定是那种又细又高的,而踢足球的是宽低的,
最大似然估计就是,把数据带进去看它属于哪个正态分布,假设有个一米九的,我们就可以猜出他是打篮球的

中心极限定理

在这里插入图片描述
在这里,我们的随机变量是误差的值

概率密度函数

在这里插入图片描述
概率密度函数:当f(x)越大说明某个x出现在这个正态分布上的概率越大
f(x)并不是概率,而是概率密度,因为概率不好求,所以我们求概率密度,如下图
在这里插入图片描述
上图中的阴影部分的面积就是概率,它不好求,需要积分,所以我们用概率密度代替,效果一样,当概率密度最大的时候就是最优解

损失函数

下图是化解步骤:
在这里插入图片描述
L:最大总似然估计:m个样本里的每个样本的似然相乘

因为相乘不好算,所以我们取对数

取对数可以把连乘变成连加,如下
在这里插入图片描述
上图中第四行:减号前面的值是固定的,所以减号后面的值越小整个值就越大
所以上图中最后的式子就是我们的线性回归的损失函数,我们要求得就是损失函数最小的时候
在这里插入图片描述

解析解

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

代码实现

用代码实现——用解析解的方式求解模型

import numpy as np
import matplotlib.pyplot as pl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值