1050 螺旋矩阵(25 分)
本题要求将给定的 N 个正整数按非递增的顺序,填入“螺旋矩阵”。所谓“螺旋矩阵”,是指从左上角第 1 个格子开始,按顺时针螺旋方向填充。要求矩阵的规模为 m 行 n 列,满足条件:m×n 等于 N;m≥n;且 m−n 取所有可能值中的最小值。
输入格式:
输入在第 1 行中给出一个正整数 N,第 2 行给出 N 个待填充的正整数。所有数字不超过 104,相邻数字以空格分隔。
输出格式:
输出螺旋矩阵。每行 n 个数字,共 m 行。相邻数字以 1 个空格分隔,行末不得有多余空格。
输入样例:
12
37 76 20 98 76 42 53 95 60 81 58 93
输出样例:
98 95 93
42 37 81
53 20 76
58 60 76
问题分析:难点在于对矩阵的赋值不是按矩阵顺序, 上下左右的赋值有不同的循环,且每循环一次,控制量都要变化,最后一个值的赋值判断防止最后一个值填不上的问题。
程序:
import math
a = int(input())
b = [int(i) for i in input().split()]
if a==1:
print(b[0],end="")
else:
b.sort(reverse = True)
b=list(map(str,b))
if math.sqrt(a)%1==0:
m=int(math.sqrt(a))
else:
m =int(math.sqrt(a)+1)
while a%m!=0:
m+=1
n = a//m
matrix = [[0 for i in range(n)] for i in range(m)]
k = 0
i = 0
j = 0
l = 0
while k<a:
while k<a and i<n-1:
matrix[j][i]=b[k]
i+=1
k+=1
while k<a and j<m-1:
matrix[j][i]=b[k]
j+=1
k+=1
while k<a and i>l:
matrix[j][i]=b[k]
i-=1
k+=1
while k<a and j>l:
matrix[j][i]=b[k]
j-=1
k+=1
i,j,l,m,n=i+1,j+1,l+1,m-1,n-1
if k==a-1:
matrix[j][i]=b[k]
k+=1
for i in matrix:
print(" ".join(i))