均值滤波器中,模板内像素的权重都为一,其只是简单的像素加法平均
而,加权均值滤波器,对模板中的像素点赋予不同的权重,求的是像素的加权平均,典型的模板,例如高斯模糊,其模板权重呈现钟型的高斯分布:
下面使用上式表示的模板,实现:
图像数据 :
导入,要使用的库:
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
读取图像数据并可视化:
img = Image.open('Fig0333(a)(test_pattern_blurring_orig).tif')
plt.axis('off')
plt.imshow(img, cmap = 'gray')
plt.show()
滤波过程:
定义滤波模板:
kernel = [[1,2,1], [2,4,2], [1,2,1]]
滤波函数:
def rejector2(img, m, n, kernel):
num_sum = [sum(i) for i in kernel]
num_sum = sum(num_sum)
img_data = np.array(img)
img_new = [[] for _ in range(np.shape(img_data)[0])]
a = m // 2
b = n // 2
for i in range(np.shape(img_data)[0]):
for j in range(np.shape(img_data)[1]):
num = 0
x = 0
for k in range(i-a, i+a+1, 1):
y = 0
for l in range(j-b, j+b+1, 1):
c = k>=0 and k<np.shape(img_data)[0]
d = l>=0 and l<np.shape(img_data)[1]
#依然使用0填充
if c and d:
#计算模板中像素的加权之和
num += img_data[k][l] * kernel[x][y]
y += 1
x += 1
#求平均值
num = num / num_sum
img_new[i].append(int(num))
return img_new
测试结果,可视化:
img_new = rejector2(img, len(kernel), len(kernel[0]), kernel)
plt.figure(figsize=(25,25))
plt.subplot(131)
plt.axis('off')
plt.imshow(img_new, cmap = 'gray')
plt.subplot(132)
plt.axis('off')
plt.imshow(new_img[0], cmap = 'gray')
plt.subplot(133)
plt.axis('off')
plt.imshow(img, cmap = 'gray')
plt.show()
左侧为加权均值滤波,中间为平滑线性滤波,右侧为原图像