线性单元和梯度下降 总结

本文总结了阿里云TIANCHI的AI学习课程,涵盖了监督学习和无监督学习的基本概念,包括线性回归、决策树、SVM、神经网络等常见模型,以及K均值、高斯混合等无监督学习模型。同时,深入探讨了梯度下降优化算法及其变种,如SGD、Momentum、Nesterov accelerated gradient、Adagrad、RMSprop、Adam等。
摘要由CSDN通过智能技术生成

课程来自于阿里云TIANCHI的AI学习,仅以此博客作为学习总结,下附课程链接:
链接: link

监督学习和无监督学习

  • 常见的监督学习模型
    线性回归 决策树 SVM 神经网络
  • 常见的无监督学习模型
    K均值 带label信息的量化聚类 高斯混合聚类

梯度下降优化算法

优点:

  1. loss下降稳定,对于convex function,确保收敛到最小值
  2. 对于non-convex function,确保收敛到局部最小值

缺点:

  1. 速度太慢,效率太低,扫一遍样本集,才更新一次参数
  2. 要把所有数据都load到内存进行梯度计算,无法应用在大数据集上
  3. 无法进行online learning
  • 牛顿法优化
  • 梯度下降优化算法 SGD
  • 随机梯度下降优化算法的变种 – Mini batach gradient descent
  • 随机梯度下降优化算法的变种 – Momentum
  • 随机梯度下降优化算法的变种 – Nesterov accelerated gradient
  • 随机梯度下降优化算法的变种 – Adagard
  • 随机梯度下降优化算法的变种 – RMSprop
  • 随机梯度下降优化算法的变种 – Adam
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值