MENU
课程来自于阿里云TIANCHI的AI学习,仅以此博客作为学习总结,下附课程链接:
链接: link
监督学习和无监督学习
- 常见的监督学习模型
线性回归 决策树 SVM 神经网络 - 常见的无监督学习模型
K均值 带label信息的量化聚类 高斯混合聚类
梯度下降优化算法
优点:
- loss下降稳定,对于convex function,确保收敛到最小值
- 对于non-convex function,确保收敛到局部最小值
缺点:
- 速度太慢,效率太低,扫一遍样本集,才更新一次参数
- 要把所有数据都load到内存进行梯度计算,无法应用在大数据集上
- 无法进行online learning
- 牛顿法优化
- 梯度下降优化算法 SGD
- 随机梯度下降优化算法的变种 – Mini batach gradient descent
- 随机梯度下降优化算法的变种 – Momentum
- 随机梯度下降优化算法的变种 – Nesterov accelerated gradient
- 随机梯度下降优化算法的变种 – Adagard
- 随机梯度下降优化算法的变种 – RMSprop
- 随机梯度下降优化算法的变种 – Adam