One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Line 1: One integer: the maximum of time any one cow must walk.
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
Hint
Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
题意:
给定一个奶牛x, 令其他奶牛到这个奶牛x然后返回,求这些奶牛最短路径中的最长路径。
一开始是直接单求一个奶牛到这个奶牛的最短路径, 然后求x到这些奶牛的最短路径, 提交发现无奈超时, 然后百度了一下, 发现可以将两条边取反就可以实现将问题转换为求x到这些奶牛的最短路径了。 。。 感觉自己是真的蠢。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
int n,m,x;
const int maxn=1005;
const int INF=0x3f3f3f3f;
int mapp[maxn][maxn];
int vis[maxn];
int d1[maxn];
int d2[maxn];
void djst(int start,int * d)
{
d[start]=0;
while (1)
{
int u=-1;
int maxx=INF;
for (int i=1;i<=n;i++)
{
if(!vis[i]&&d[i]<maxx)
{
u=i;
maxx=d[i];
}
}
if(u==-1)
break;
vis[u]=1;
for (int i=1;i<=n;i++)
{
if(!vis[i]&&d[i]>d[u]+mapp[u][i])
d[i]=d[u]+mapp[u][i];
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&x);
memset (vis,0,sizeof(vis));
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
if(i==j)
mapp[i][j]=0;
else
mapp[i][j]=INF;
}
for (int i=1;i<=n;i++)
{
d1[i]=INF;
d2[i]=INF;
}
for (int i=0;i<m;i++)
{
int x,y,len;
scanf("%d%d%d",&x,&y,&len);
mapp[x][y]=len;
}
int max2=-1;
djst(x,d1);
//这里是关键,j是从i+1开始,否则会出现重复交换的情况
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++)
swap(mapp[i][j],mapp[j][i]);
memset (vis,0,sizeof(vis));
djst(x,d2);
for (int i=1;i<=n;i++)
{
max2=max(max2,d2[i]+d1[i]);
}
printf("%d\n",max2);
return 0;
}