【基于规则】n-sigma

在正态分布中:

  • 约68%的数据点会落在均值±1σ的范围内
  • 约95%的数据点会落在均值±2σ的范围内
  • 约99.7%的数据点会落在均值±3σ的范围内

这称为68-95-99.7法则(Empirical Rule)。

假设我们有一组数据,其均值为μ,标准差为σ。某个数据点x的n-sigma计算公式如下:

 若z=1.2,说明该数据点在1σ和2σ之间(位于均值 μ 加上 1.2 个标准差)

算法缺点:

不能用于预测趋势:随着数据点的绝对值增大,通常会使得数据点相对于均值的n-sigma值增大,从而使得这个数据点所在的范围(即n-sigma的上下界)也相应变宽

异常检测逻辑

<think>嗯,用户想了解基于规则和面向对象的图像分类方法,特别是算法和实现。首先,我需要回忆一下这两种方法的定义和区别。基于规则的分类应该是指使用预定义的逻辑或条件来进行分类,而面向对象的分类可能涉及图像分割后的对象处理,比如多尺度分割。 用户提供的引用中有几个相关的部分。引用[3]提到了面向对象的影像分类技术,使用了多尺度分割算法,结合光谱和形状特征。引用[2]讨论了层次分类算法,说明父类是虚类,分类时只应用子类,这可能和基于规则的分类有关。引用[4]提到了超像素的初始化,这可能与分割步骤有关。需要结合这些信息来构建回答。 首先,我需要解释基于规则的分类方法。通常,这可能包括阈值法、决策树或者专家系统。比如设定光谱阈值来区分植被和非植被。然后,面向对象的分类则先进行图像分割,生成对象,再根据对象的特征进行分类,比如纹理、形状、上下文关系等。引用[3]中的多尺度分割算法是关键,这里需要详细说明步骤。 接下来是算法步骤。基于规则的分类可能分为特征选择、规则构建和应用规则。面向对象的分类则需要分割、特征提取、规则或模型构建,以及分类。可能需要提到像eCognition这样的软件,如引用[3]中提到的。 在实现部分,用户可能需要代码示例。比如使用Python的scikit-image进行分割,然后提取特征,再用决策树进行分类。需要确保代码符合用户的要求,使用正确的库,比如skimage、sklearn等。同时,要引用相关的引用内容,比如多尺度分割和超像素初始化。 然后生成相关问题,可能需要考虑两种方法的比较、挑战、常用工具和评估指标。确保问题能够引导用户进一步深入学习。 需要注意的是,用户可能对具体的技术细节和实际应用案例感兴趣,所以应结合引用中的案例,如贝叶斯分类和KNN在图像分类中的应用,但当前问题主要基于规则和面向对象,可能需要调整引用内容的相关部分。 最后,检查回答结构是否清晰,分点说明,并正确使用LaTeX格式,确保数学表达式和代码块符合要求。同时,引用标记要正确对应,比如引用[2]和[3]在适当的位置。</think>### 基于规则和面向对象的图像分类方法解析 #### 一、基于规则的图像分类 **核心思想**:通过预定义的逻辑条件(光谱阈值、形状参数等)直接划分地物类型[^2]。 **典型算法流程**: 1. **特征选择**:选取光谱值(如NDVI)、纹理(如灰度共生矩阵)、几何特征(如长宽比) 2. **规则构建**:通过专家知识或统计方法设定判断条件 $$ \text{NDVI} > 0.3 \Rightarrow \text{植被类} $$ 3. **规则应用**:逐像素或逐对象执行判断条件 **Python实现示例**(阈值分类): ```python import numpy as np from skimage import io image = io.imread('image.tif') ndvi = (image[:,:,3]-image[:,:,2])/(image[:,:,3]+image[:,:,2]+1e-6) vegetation_mask = ndvi > 0.3 # 光谱阈值规则 ``` #### 二、面向对象的图像分类 **核心思想**:先进行图像分割生成同质对象,再基于对象特征分类[^3] **关键技术环节**: 1. **多尺度分割** - 综合光谱异质性和形状异质性计算 $$ H = w_{color} \cdot \Delta h_{color} + w_{shape} \cdot \Delta h_{shape} $$ - 通过迭代合并像素直到异质性超过阈值[^3] 2. **特征提取** | 特征类型 | 典型参数 | |----------------|--------------------------| | 光谱特征 | 均值、标准差 | | 纹理特征 | 能量、熵、对比度 | | 几何特征 | 面积、长宽比、紧致度 | 3. **分类规则构建** - 基于专家系统的层次分类(父类禁用,子类继承特征)[^2] - 示例规则树: ``` 若 平均红边波段 > 120 → 植被 若 纹理熵 < 2 → 草地 否则 → 树林 ``` **Python实现示例**(基于skimage): ```python from skimage.segmentation import felzenszwalb from sklearn.tree import DecisionTreeClassifier # 多尺度分割 segments = felzenszwalb(image, scale=100, sigma=0.5, min_size=50) # 特征提取 features = [] for seg_id in np.unique(segments): mask = segments == seg_id features.append([ np.mean(image[mask][:,0]), # 红光波段均值 np.std(image[mask][:,3]), # 近红外标准差 np.sum(mask) # 对象面积 ]) # 构建决策树分类器 clf = DecisionTreeClassifier() clf.fit(train_features, train_labels) ``` #### 三、方法对比 | 维度 | 基于规则方法 | 面向对象方法 | |----------------|-------------------------------|-------------------------------| | 处理单元 | 像素 | 图像对象 | | 优势 | 计算简单、实时性强 | 利用上下文信息、抗噪性好 | | 典型应用 | 简单场景分类(如水体提取) | 复杂地物识别(如城市建筑) | | 工具平台 | ENVI Band Math | eCognition Developer | #### 四、实现要点 1. **分割质量优化**: - 超像素初始化时需平衡空间分布密度与地物尺度[^4] - 步长计算: $$ S = \sqrt{\frac{N}{K}} \quad (N:总像素数, K:超像素数) $$ 2. **规则树设计原则**: - 按层次结构逐步细化分类 - 优先使用区分度高的特征 - 设置置信度阈值避免错误累积 3. **精度验证方法**: - 混淆矩阵分析 - Kappa系数计算 - 面向对象方法需进行分割评价(如Dice系数)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值