项目
文章平均质量分 80
每天都要吃肉肉(●'◡'●)
绝不妄自菲薄
展开
-
【项目问答】鲸鱼比赛
EDA部分比赛的任务是识别给定图片属于哪个鲸鱼或海豚。1、样本是什么样的有2个jpg格式存储的训练集和测试集,2个csv文件存储样本标签信息,1个submission.csv标明对每张图像预测对应id2、标签是什么样的对于每张图像指明所属品种和id(用individual_id)id有1万5千多个,共有28个种类3、样本量有多大训练集有5万多张,测试集有近3万张4、EDA做了哪些工作查看样本、标签情况,处理脏数据、样本分布、数据增强(调用库:HSV、旋转)样本分布原创 2022-03-26 17:09:53 · 291 阅读 · 0 评论 -
【项目问答】文本检测与识别
介绍一下你的项目/项目中用到了哪些算法项目总共分为三部分:文本的检测、识别与界面程序的开发。文本检测通过advanced_EAST算法实现,文本识别通过CRNN实现,界面程序的开发由PyQt5。advanced_EAST通过VGG16的卷积部分实现特征提取,VGG16通过5个卷积块将通道数依次提升到64、128、256、512、512,并且每经过一个卷积块它的长和宽就除以2,也就是经过卷积后通道数变成512,长和宽变为原始的1/32。然后进行反卷积,具体的做法是先将特征提取的最后一层输出层做反卷原创 2022-03-20 22:19:54 · 412 阅读 · 0 评论 -
文本检测与识别
基于Advanced_EAST的文本检测算法Advanced_EAST算法使用全卷积网络结构,输入图像通过全卷积神经网络后直接获得候选文本的位置,再通过非极大值抑制算法(Non-Maximum Suppression,NMS)获得最后的文本检测结果。网络结构实际文本检测过程中,可能会出现文字大小不一的情况。文字尺寸较大时我们需要卷积神经网络后期提取的更高级的特征,尺寸较小时则需要前期提取的低级特征。针对这些需要,我们需要设计一个使用不同级别特征的网络结构图。Advanced_EAST采用U型结构原创 2022-02-27 11:26:35 · 2808 阅读 · 0 评论 -
初读YOLOv1算法
特点及优势1、将分类问题转化为回归问题, 预测出一系列连续的数值,将边界框和相关的分类可能性从空间上分离开了2、利用单一的神经网络实现端到端的检测,无需复杂的工作流,实时性好3、又快又好,不太可能可能出现将背景误判为目标,因为它是一次性装入全图,隐式学习全图的信息4、泛化迁移能力强,在自然物体上训练的模型在艺术作品上进行预测效果依然比其他模型好。普适性强,可以应用于多个领域缺点1、相比当年最强的几个模型在准确率上还有些落后2、定位能力和识别小目标的能力比较差(每个grid cel原创 2022-01-19 15:18:09 · 2635 阅读 · 1 评论 -
【项目问答】YOLOv5
Yolov5官方代码中,给出的目标检测网络中一共有4个版本,分别是Yolov5s、Yolov5m、Yolov5l、Yolov5x四个模型。Yolov5s网络是Yolov5系列中深度最小,特征图的宽度最小的网络。后面的3种都是在此基础上不断加深,不断加宽。网络结构:1、模型参数配置:【YOLOV5-5.x 源码解读】yolov5s.yaml_满船清梦压星河HK的博客-CSDN博客_yolov5s2、模块实现:【YOLOV5-5.x 源码解读】common.py_满船清梦压星河HK的博客-CSD原创 2022-02-16 13:08:18 · 7122 阅读 · 2 评论 -
【项目问答】EfficientNet
篇论文主要是用NAS(Neural Architecture Search)技术来搜索网络的图像输入分辨率r ,网络的深度depth以及channel的宽度width三个参数的合理化配置。增加网络的深度depth能够得到更加丰富、复杂的特征并且能够很好的应用到其它任务中。但网络的深度过深会面临梯度消失,训练困难的问题。 增加网络的width能够获得更高细粒度的特征并且也更容易训练,但对于width很大而深度较浅的网络往往很难学习到更深层次的特征。 增加输入网络的图像分辨率能够潜在得获得更高细粒度的特原创 2022-02-26 13:00:58 · 3017 阅读 · 0 评论 -
【训练相关及混合】
1、介绍一下你的项目首先介绍一下比赛的背景:现在新冠疫情非常流行,医学影像信息学协会为了帮助更多患者得到治疗,在kaggle上举办了这个比赛。在比赛中,一个患者可以做多次检查,每次检查对应多张医学影像图像,而这些图像就是我们的比赛数据,比赛要求对图像预测出新冠病毒的位置,对检查要求预测出是哪一种新冠病毒,我对图像用YOLOv5去做目标检测,对检查用了efficientnet去做分类。通过旋转、平移等数据增强方法将mAP从0.x提升到0.x,另外还有一个trick的点就是用efficient对图像进行原创 2022-02-22 13:07:33 · 980 阅读 · 0 评论