ADSP重点习题
第二章
例题2.1.5
Consider the following harmonic process
x
(
n
)
=
c
o
s
(
0.1
π
n
+
φ
1
)
+
2
s
i
n
(
1.5
n
+
φ
2
)
.
x(n)=cos(0.1\pi n+ \varphi_{1})+2sin(1.5n+\varphi_{2})\,.
x(n)=cos(0.1πn+φ1)+2sin(1.5n+φ2).
where
φ
1
\varphi_{1}
φ1 and
φ
2
\varphi_{2}
φ2 are IID random variables uniformly distributed in the interval
[
0
,
2
π
]
[0,2\pi]
[0,2π]. The first component of
x
(
n
)
x(n)
x(n) is periodic with
ω
1
=
0.1
π
\omega_1=0.1\pi
ω1=0.1π and period equal to 20 while the second component is almost periodic with
ω
1
=
0.1
π
=
1.5
\omega_1=0.1\pi=1.5
ω1=0.1π=1.5. Thus sequence
x
(
n
)
x(n)
x(n) is almost periodic.
The mean of
x
(
n
)
x(n)
x(n) is
μ
x
(
n
)
=
E
{
x
(
n
)
}
=
E
{
c
o
s
(
0.1
π
n
+
φ
1
)
+
2
s
i
n
(
1.5
n
+
φ
2
)
}
=
0
\mu_x(n)=E\{ x(n)\} \\ = E\{cos(0.1\pi n+ \varphi_{1})+2sin(1.5n+\varphi_{2})\} \\ = 0
μx(n)=E{x(n)}=E{cos(0.1πn+φ1)+2sin(1.5n+φ2)}=0
and the autocorrelation sequence(using mutual independence between
φ
1
\varphi_{1}
φ1 and
φ
2
\varphi_{2}
φ2) is:
r
x
(
n
1
,
n
2
)
=
E
{
x
(
n
1
)
x
∗
(
n
2
)
}
=
E
{
c
o
s
(
0.1
π
n
1
+
φ
1
)
c
o
s
(
0.1
π
n
2
+
φ
1
)
}
+
E
{
2
s
i
n
(
1.5
n
1
+
φ
2
)
2
c
o
s
(
1.5
n
2
+
φ
2
)
}
=
1
2
c
o
s
[
0.1
π
(
n
1
−
n
2
)
]
+
2
c
o
s
[
1.5
(
n
1
−
n
2
)
]
r_{x}(n_{1},n_{2})=E\{ x(n_{1})x^{*}(n_{2})\} \\ =E\{cos(0.1\pi n_{1}+\varphi_{1})cos(0.1\pi n_{2}+\varphi_{1})\} \\ +E\{2sin(1.5n_{1}+\varphi_{2})2cos(1.5n_{2}+\varphi_{2})\} \\ =\frac{1}{2}cos[0.1\pi (n_{1}-n_{2})] + 2cos[1.5(n_{1}-n_{2})]
rx(n1,n2)=E{x(n1)x∗(n2)}=E{cos(0.1πn1+φ1)cos(0.1πn2+φ1)}+E{2sin(1.5n1+φ2)2cos(1.5n2+φ2)}=21cos[0.1π(n1−n2)]+2cos[1.5(n1−n2)]
or
r
x
(
l
)
=
1
2
c
o
s
0.1
π
l
+
2
c
o
s
1.5
l
r_{x}(l)=\frac{1}{2}cos0.1\pi l + 2cos1.5l
rx(l)=21cos0.1πl+2cos1.5l
The power spectrum
R
x
(
e
j
w
)
R_{x}(e^{jw})
Rx(ejw) is given by:
R
x
(
e
j
w
)
=
2
π
δ
(
ω
+
1.5
)
+
π
2
δ
(
ω
+
0.1
π
)
+
2
π
δ
(
ω
−
1.5
)
+
π
2
δ
(
ω
−
0.1
π
)
R_{x}(e^{jw})=2\pi \delta(\omega+1.5)+\frac{\pi}{2}\delta(\omega+0.1 \pi) \\+2\pi \delta(\omega-1.5)+\frac{\pi}{2}\delta(\omega-0.1 \pi)
Rx(ejw)=2πδ(ω+1.5)+2πδ(ω+0.1π)+2πδ(ω−1.5)+2πδ(ω−0.1π)
补充:
积化和差,和差化积公式:
习题2.12
A causal LTI system which is described by the difference equation
y
(
n
)
=
1
2
y
(
n
−
1
)
+
x
(
n
)
+
1
3
x
(
n
−
1
)
y(n)=\frac{1}{2}y(n-1)+x(n)+\frac{1}{3}x(n-1)
y(n)=21y(n−1)+x(n)+31x(n−1)
is driven by a zero-mean WSS process with autocorrelation
r
x
(
l
)
=
0.
5
∣
l
∣
r_{x}(l)=0.5^{|l|}
rx(l)=0.5∣l∣.
(a)Determine the PSD and the autocorrelation of the output sequence
y
(
n
)
y(n)
y(n).
易得:
H
(
z
)
=
1
+
1
3
z
−
1
1
−
1
2
z
−
1
,
∣
z
∣
<
1
2
R
x
(
z
)
=
3
4
5
4
−
1
2
(
z
+
z
−
1
)
,
1
2
<
∣
z
∣
<
2
H(z)=\frac{1+\frac{1}{3}z^{-1}}{1-\frac{1}{2}z^{-1}}, |z|<\frac{1}{2} \\ R_{x}(z)=\frac{\frac{3}{4}}{\frac{5}{4}-\frac{1}{2}(z+z^{-1})}, \frac{1}{2}<|z|<2
H(z)=1−21z−11+31z−1,∣z∣<21Rx(z)=45−21(z+z−1)43,21<∣z∣<2
(b)Determine the cross-correlation
r
x
y
(
l
)
r_{xy}(l)
rxy(l) and cross-PSD
R
x
y
(
e
j
w
)
R_{xy}(e^{jw})
Rxy(ejw) between the input and output signals.
知识点:
R
x
y
(
z
)
=
H
∗
(
1
z
∗
)
R
x
(
z
)
R
y
x
(
z
)
=
H
(
z
)
R
x
(
z
)
R
y
(
z
)
=
H
(
z
)
H
∗
(
1
z
∗
)
R
x
(
z
)
R_{xy}(z)=H^{*}(\frac{1}{z^{*}})R_{x}(z) \\ R_{yx}(z)=H(z)R_{x}(z) \\ R_{y}(z)=H(z)H^{*}(\frac{1}{z^{*}})R_{x}(z)
Rxy(z)=H∗(z∗1)Rx(z)Ryx(z)=H(z)Rx(z)Ry(z)=H(z)H∗(z∗1)Rx(z)
习题2.13
A WSS process with PSD
R
x
(
e
j
w
)
=
1
/
(
1.64
+
1.6
c
o
s
w
)
R_{x}(e^{jw})=1/(1.64+1.6cosw)
Rx(ejw)=1/(1.64+1.6cosw) is applied to a causal system described by the following difference equation
y
(
n
)
=
0.6
y
(
n
−
1
)
+
x
(
n
)
+
1.25
x
(
n
−
1
)
y(n)=0.6y(n-1)+x(n)+1.25x(n-1)
y(n)=0.6y(n−1)+x(n)+1.25x(n−1)
Compute (a)the PSD of the output and (b)the cross-PSD
R
x
y
(
e
j
w
)
R_{xy}(e^{jw})
Rxy(ejw) between input and output.
涉及知识点同上题
第三章
习题3.2
Consider a zero-mean random sequence
x
(
n
)
x(n)
x(n) with PSD
R
x
(
e
j
w
)
=
5
+
3
c
o
s
w
17
+
8
c
o
s
w
R_{x}(e^{jw})=\frac{5+3cosw}{17+8cosw}
Rx(ejw)=17+8cosw5+3cosw
(a)Determine the innovations representation of the process
x
(
n
)
x(n)
x(n)
(b)Find the autocorrelation sequence
r
x
(
l
)
r_{x}(l)
rx(l).
知识点:
R
x
(
z
)
=
σ
w
2
H
(
z
)
H
∗
(
1
z
∗
)
R_{x}(z)=\sigma_{w} ^{2}H(z)H^{*}(\frac{1}{z^{*}})
Rx(z)=σw2H(z)H∗(z∗1)
习题3.7
Use the Yule-Walker equations to determine the autocorrelation and partial autocorrelation coefficients of the following AR models,assuming that
w
(
n
)
w(n)
w(n)~
W
N
(
0
,
1
)
WN(0,1)
WN(0,1).
(a)
x
(
n
)
=
0.5
x
(
n
−
1
)
+
w
(
n
)
x(n)=0.5x(n-1)+w(n)
x(n)=0.5x(n−1)+w(n)
(b)
x
(
n
)
=
1.5
x
(
n
−
1
)
−
0.6
x
(
n
−
2
)
+
w
(
n
)
x(n)=1.5x(n-1)-0.6x(n-2)+w(n)
x(n)=1.5x(n−1)−0.6x(n−2)+w(n)
知识点:
尤利-沃克方程:
对于全极点模型,由(4.2.15)和(4.2.16):
∑
k
=
0
P
a
k
r
h
(
l
−
k
)
=
d
0
h
∗
(
−
l
)
,
−
∞
<
l
<
∞
∑
k
=
0
P
a
k
r
h
(
l
−
k
)
=
0
,
l
>
0
\sum_{k=0}^{P}a_{k}r_{h}(l-k)=d_{0}h^{*}(-l),-\infty<l<\infty \\ \sum_{k=0}^{P}a_{k}r_{h}(l-k)=0,l>0
k=0∑Pakrh(l−k)=d0h∗(−l),−∞<l<∞k=0∑Pakrh(l−k)=0,l>0
写成矩阵形式,即尤利-沃克(Yule-Walker)方程:
[
r
h
(
0
)
r
h
(
1
)
⋯
r
h
(
P
)
r
h
∗
(
1
)
r
h
(
0
)
⋯
r
h
(
P
−
1
)
⋮
⋮
⋱
⋮
r
h
∗
(
P
)
r
h
∗
(
P
−
1
)
⋯
r
h
(
0
)
]
[
1
a
1
⋮
a
p
]
=
[
∣
d
0
∣
2
0
⋮
0
]
\left[\begin{matrix} r_{h}(0) & r_{h}(1) & \cdots & r_{h}(P) \\ r^{*}_{h}(1) & r_{h}(0) & \cdots & r_{h}(P-1) \\ \vdots & \vdots & \ddots & \vdots \\ r_{h} ^{*}(P) & r_{h}^{*}(P-1) & \cdots & r_{h}(0) \end{matrix}\right] \left[ \begin{matrix} 1 \\ a_{1} \\ \vdots \\ a_{p} \end{matrix}\right]=\left[\begin{matrix}|d_0|^2 \\ 0 \\ \vdots \\ 0\end{matrix}\right]
⎣⎢⎢⎢⎡rh(0)rh∗(1)⋮rh∗(P)rh(1)rh(0)⋮rh∗(P−1)⋯⋯⋱⋯rh(P)rh(P−1)⋮rh(0)⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡1a1⋮ap⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡∣d0∣20⋮0⎦⎥⎥⎥⎤
即为:
R
h
a
=
−
r
h
\mathbf{R_{h}a}=-\mathbf{r_{h}}
Rha=−rh
同时,我们也可以根据输出过程
x
(
n
)
x(n)
x(n)的自相关表示模型参数:
R
x
a
=
−
r
x
\mathbf{R_{x}a}=-\mathbf{r_{x}}
Rxa=−rx
其中
r
x
=
σ
w
2
r
h
\mathbf{r_{x}}=\sigma_{w}^2 \mathbf{r_{h}}
rx=σw2rh,因为
r
x
(
l
)
=
σ
w
2
r
h
(
l
)
r_{x}(l)=\sigma_{w}^2r_{h}(l)
rx(l)=σw2rh(l)
PACS(部分自相关序列的计算)
[ 1 ρ ( 1 ) ⋯ ρ ( m − 1 ) ρ ∗ ( 1 ) 1 ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ ρ ∗ ( m − 1 ) ⋯ ρ ∗ ( 1 ) 1 ] [ a 1 ( m ) a 2 ( m ) ⋮ a m ( m ) ] = [ ρ ∗ ( 1 ) ρ ∗ ( 2 ) ⋮ ρ ∗ ( m ) ] \left[\begin{matrix} 1 & \rho(1) & \cdots & \rho(m-1) \\ \rho^{*}(1) & 1 & \cdots &\vdots \\ \vdots & \vdots & \ddots & \vdots \\ \rho ^{*}(m-1) & \cdots & \rho^{*}(1) & 1 \end{matrix}\right] \left[ \begin{matrix} a^{(m)}_1 \\ a^{(m)}_{2} \\ \vdots \\ a^{(m)}_{m} \end{matrix}\right]=\left[\begin{matrix}\rho^{*}(1) \\ \rho^{*}(2) \\ \vdots \\ \rho^{*}(m) \end{matrix}\right] ⎣⎢⎢⎢⎢⎡1ρ∗(1)⋮ρ∗(m−1)ρ(1)1⋮⋯⋯⋯⋱ρ∗(1)ρ(m−1)⋮⋮1⎦⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎡a1(m)a2(m)⋮am(m)⎦⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎡ρ∗(1)ρ∗(2)⋮ρ∗(m)⎦⎥⎥⎥⎤,对于 m > P , a m ( m ) = 0 m>P,a^{(m)}_{m}=0 m>P,am(m)=0,我们可以使用序列 a m ( m ) , m = 1 , 2 , ⋯ a^{(m)}_{m},m=1,2,\cdots am(m),m=1,2,⋯这一被称为部分自相关的序列去确定全极点模型的阶。 ρ ( l ) \rho(l) ρ(l)为归一化的自相关序列, ρ ( l ) = r ( l ) r ( 0 ) \rho(l)=\frac{r(l)}{r(0)} ρ(l)=r(0)r(l)
习题3.11
Consider the following AR(2) models:(i)
x
(
n
)
=
0.6
x
(
n
−
1
)
+
0.3
x
(
n
−
2
)
+
w
(
n
)
x(n)=0.6x(n-1)+0.3x(n-2)+w(n)
x(n)=0.6x(n−1)+0.3x(n−2)+w(n) and (ii)
x
(
n
)
=
0.8
x
(
n
−
1
)
−
0.5
x
(
n
−
2
)
+
w
(
n
)
x(n)=0.8x(n-1)-0.5x(n-2)+w(n)
x(n)=0.8x(n−1)−0.5x(n−2)+w(n),where
w
(
n
)
w(n)
w(n)~
W
G
N
(
0
,
1
)
WGN(0,1)
WGN(0,1).
(a)Find the general expression for the normalized autocorrelation sequence
ρ
(
l
)
\rho(l)
ρ(l), and determine
σ
x
2
\sigma_{x}^2
σx2.
(b)Plot
ρ
(
l
)
0
15
{\rho(l)}^{15}_{0}
ρ(l)015 and check if the models exhibit pseudoperiodic behavior.
From these plots,
x
(
n
)
=
0.6
x
(
n
−
1
)
+
0.3
x
(
n
−
2
)
+
w
(
n
)
x(n) = 0.6x(n − 1) + 0.3x(n − 2) + w(n)
x(n)=0.6x(n−1)+0.3x(n−2)+w(n) does not show any pseudo-periodic behavior, while
x
(
n
)
=
0.8
x
(
n
−
1
)
−
0.5
x
(
n
−
2
)
+
w
(
n
)
x(n) = 0.8x(n − 1) − 0.5x(n − 2) + w(n)
x(n)=0.8x(n−1)−0.5x(n−2)+w(n) does show pseudo-periodic behavior.
( c)Justify your answer in part(b) by ploting the PSD of the two models.
Clearly, the first model has no fundamental frequency.While the second system does indeed have a large no zero frequency component.
知识点:
二阶模型确定好
r
(
0
)
,
r
(
1
)
r(0),r(1)
r(0),r(1)的值和
r
(
l
)
r(l)
r(l)与
r
(
l
−
1
)
,
r
(
l
−
2
)
r(l-1),r(l-2)
r(l−1),r(l−2)的关系式之后,就可以画出整个
r
(
l
)
,
ρ
(
l
)
r(l),\rho(l)
r(l),ρ(l)曲线。
习题3.21
Consider the MA(2) model
x
(
n
)
=
w
(
n
)
−
0.1
w
(
n
−
1
)
+
0.2
w
(
n
−
2
)
x(n)=w(n)-0.1w(n-1)+0.2w(n-2)
x(n)=w(n)−0.1w(n−1)+0.2w(n−2).
(a) Is the process
x
(
n
)
x(n)
x(n) stationary,why?
The process
x
(
n
)
x(n)
x(n) is a linear combination of a stationary process
w
(
n
)
w(n)
w(n), therefore
x
(
n
)
x(n)
x(n) is stationary.
(b) Is the model minimum-phase,why?
( c) Determine the autocorrelation and the partial autocorrelation of the process.
知识点:
低阶极点模型(低阶AP模型)
一阶全极点模型:AP(1)
一个AP(1)模型有传递函数如下:
H
(
z
)
=
d
0
1
+
a
z
−
1
H(z)=\frac{d_0}{1+az^{-1}}
H(z)=1+az−1d0,如果
−
1
<
a
<
1
-1<a<1
−1<a<1,则
H
(
z
)
H(z)
H(z)是最小相位的。PACS长度为一:
a
1
=
−
r
(
1
)
r
(
0
)
=
−
ρ
(
1
)
a_1=-\frac{r(1)}{r(0)}=-\rho(1)
a1=−r(0)r(1)=−ρ(1)
滤波器冲激响应:
h
(
n
)
=
d
0
(
−
a
)
n
u
(
n
)
h(n)=d_0(-a)^nu(n)
h(n)=d0(−a)nu(n)
自相关序列:
r
(
l
)
=
r
(
0
)
(
−
a
)
∣
l
∣
,
r
(
0
)
=
d
0
2
1
−
a
2
r(l)=r(0)(-a)^{|l|},r(0)=\frac{d^2_0}{1-a^2}
r(l)=r(0)(−a)∣l∣,r(0)=1−a2d02
自相关z变换:
R
(
z
)
=
d
0
2
(
1
+
a
z
−
1
)
(
1
+
a
z
)
R(z)=\frac{d^2_0}{(1+az^{-1})(1+az)}
R(z)=(1+az−1)(1+az)d02
频谱:
R
(
e
j
w
)
=
d
0
2
1
+
2
a
c
o
s
w
+
a
2
R(e^{jw})=\frac{d^2_0}{1+2acosw+a^2}
R(ejw)=1+2acosw+a2d02
二阶全极点模型:AP(2)
AP(2)模型系统函数:
H
(
z
)
=
d
0
1
+
a
1
z
−
1
+
a
2
z
−
2
=
d
0
(
1
−
p
1
z
−
1
)
(
1
−
p
2
z
−
1
)
H(z)=\frac{d_0}{1+a_1z^{-1}+a_2z^{-2}}=\frac{d_0}{(1-p_1z^{-1})(1-p_2z^{-1})}
H(z)=1+a1z−1+a2z−2d0=(1−p1z−1)(1−p2z−1)d0
其中:
a
1
=
−
(
p
1
+
p
2
)
,
a
2
=
p
1
p
2
a_1=-(p_1+p_2),a_2=p_1p_2
a1=−(p1+p2),a2=p1p2
最小相位条件:
−
1
<
a
2
<
1
a
2
−
a
1
>
−
1
a
2
+
a
1
>
−
1
-1<a_2<1 \\ a_2-a_1>-1 \\ a_2+a_1>-1
−1<a2<1a2−a1>−1a2+a1>−1
低阶零点模型(低阶MA模型)
一阶全零点模型:AZ(1)
H
(
z
)
=
G
(
1
+
d
1
z
−
1
)
H(z)=G(1+d_1z^{-1})
H(z)=G(1+d1z−1)
d
1
d_1
d1取任何值,模型稳定,当
−
1
<
d
1
<
1
-1<d_1<1
−1<d1<1时相位最小。
R
h
(
z
)
=
H
(
z
)
H
(
z
−
1
)
=
G
2
[
d
1
z
+
(
1
+
d
1
2
)
+
d
1
z
−
1
]
R_h(z)=H(z)H(z^{-1})=G^2[d_1z+(1+d_1^2)+d_1z^{-1}]
Rh(z)=H(z)H(z−1)=G2[d1z+(1+d12)+d1z−1]
自相关函数为上式的z反变换,有
r
h
(
0
)
=
G
2
(
1
+
d
1
2
)
,
r
h
(
1
)
=
r
h
(
−
1
)
=
G
2
d
1
r_h(0)=G^2(1+d_1^2),r_h(1)=r_h(-1)=G^2d_1
rh(0)=G2(1+d12),rh(1)=rh(−1)=G2d1,其他情况时r_h(l)=0。归一化自相关函数:
ρ
(
l
)
=
{
1
l
=
0
d
1
1
+
d
1
2
l
=
±
1
0
∣
l
∣
≥
2
\rho(l)=\left\{ \begin{array}{lr} 1 & l=0 \\ \frac{d_1}{1+d_1^2} & l=\pm1\\ 0 & |l|\ge2 \end{array} \right.
ρ(l)=⎩⎨⎧11+d12d10l=0l=±1∣l∣≥2
二阶全零点模型:AZ(2)
系统函数为:
H
(
z
)
=
G
(
1
+
d
1
z
−
1
+
d
2
z
−
2
)
H(z)=G(1+d_1z^{-1}+d_2z^{-2})
H(z)=G(1+d1z−1+d2z−2)
对于
d
1
,
d
2
d_1,d_2
d1,d2所有值,系统稳定,如果满足:
−
1
<
d
2
<
1
d
2
−
d
1
>
−
1
d
2
+
d
1
>
−
1
-1<d_2<1 \\ d_2-d_1>-1 \\ d_2+d_1>-1
−1<d2<1d2−d1>−1d2+d1>−1
则系统为最小相位系统。归一化自相关函数:
ρ
(
l
)
=
{
1
l
=
0
d
1
(
1
+
d
2
)
1
+
d
1
2
+
d
2
2
l
=
±
1
d
2
1
+
d
1
2
+
d
2
2
l
=
±
2
0
∣
l
∣
≥
2
\rho(l)=\left\{ \begin{array}{lr} 1 & l=0 \\ \frac{d_1(1+d_2)}{1+d_1^2+d_2^2} & l=\pm1\\ \frac{d_2}{1+d_1^2+d_2^2} & l=\pm2 \\ 0 & |l|\ge2 \end{array} \right.
ρ(l)=⎩⎪⎪⎪⎨⎪⎪⎪⎧11+d12+d22d1(1+d2)1+d12+d22d20l=0l=±1l=±2∣l∣≥2
频谱:
R
h
(
e
j
w
)
=
G
2
[
(
1
+
d
1
2
+
d
2
2
)
+
2
d
1
(
1
+
d
2
)
c
o
s
w
+
2
d
2
c
o
s
2
w
]
R_h(e^{jw})=G^2[(1+d_1^2+d_2^2)+2d_1(1+d_2)cosw+2d_2cos2w]
Rh(ejw)=G2[(1+d12+d22)+2d1(1+d2)cosw+2d2cos2w]
习题3.23
Determine the coefficients of a PZ(2,1) model with autocorrelation values
r
h
(
0
)
=
19
,
r
h
(
1
)
=
9
,
r
h
(
2
)
=
−
5
,
r
h
(
3
)
=
−
7
r_h(0)=19,r_h(1)=9,r_h(2)=-5,r_h(3)=-7
rh(0)=19,rh(1)=9,rh(2)=−5,rh(3)=−7
易得:
[
9
19
−
5
9
]
[
a
1
a
2
]
=
[
5
7
]
\left[\begin{matrix} 9 & 19 \\ -5 & 9 \\ \end{matrix}\right] \left[\begin{matrix} a_1 \\ a_2 \end{matrix}\right]=\left[\begin{matrix}5 \\ 7\end{matrix}\right]
[9−5199][a1a2]=[57]
所以,
a
1
=
−
1
/
2
,
a
2
=
1
/
2
a_1=-1/2,a_2=1/2
a1=−1/2,a2=1/2。由
r
a
(
l
)
=
∑
k
=
0
P
−
∣
l
∣
a
k
a
k
+
∣
l
∣
∗
,
−
P
≤
l
≤
P
r_a(l)=\sum^{P-|l|}_{k=0}a_ka^{*}_{k+|l|},-P\le l \le P
ra(l)=k=0∑P−∣l∣akak+∣l∣∗,−P≤l≤P得:
r
a
(
0
)
=
3
/
2
,
r
a
(
±
1
)
=
−
3
/
4
,
r
a
(
±
2
)
=
1
/
2
r_a(0)=3/2,r_a(\pm1)=-3/4,r_a(\pm2)=1/2
ra(0)=3/2,ra(±1)=−3/4,ra(±2)=1/2由:
r
d
(
l
)
=
∑
k
=
−
P
P
r
a
(
k
)
r
h
(
l
−
k
)
r_d(l)=\sum_{k=-P}^{P}r_a(k)r_h(l-k)
rd(l)=k=−P∑Pra(k)rh(l−k)得:
R
d
(
z
)
=
4
z
+
10
+
4
z
−
1
=
4
(
1
+
1
2
z
−
1
)
(
z
+
2
)
R_d(z)=4z+10+4z^{-1}=4(1+\frac{1}{2z^{-1}})(z+2)
Rd(z)=4z+10+4z−1=4(1+2z−11)(z+2)取其因果部分得到
D
(
z
)
D(z)
D(z),即
D
(
z
)
=
2
[
1
+
1
/
(
2
z
−
1
)
]
D(z)=2[1+1/(2z^{-1})]
D(z)=2[1+1/(2z−1)]和
d
1
=
1
/
2
d_1=1/2
d1=1/2。
知识点:
极点-零点模型
x
(
n
)
=
−
∑
k
=
1
P
a
k
x
(
n
−
k
)
+
∑
k
=
0
Q
d
k
w
(
n
−
k
)
x(n)=-\sum^{P}_{k=1}a_kx(n-k)+\sum^{Q}_{k=0}d_kw(n-k)
x(n)=−k=1∑Pakx(n−k)+k=0∑Qdkw(n−k)
其冲激响应可以写成递归形式:
h
(
n
)
=
−
∑
k
=
1
P
a
k
h
(
n
−
k
)
+
d
n
,
n
≥
0
h(n)=-\sum_{k=1}^{P}a_kh(n-k)+d_n,n\ge 0
h(n)=−k=1∑Pakh(n−k)+dn,n≥0
其中,
d
n
=
0
,
n
>
Q
d_n=0,n>Q
dn=0,n>Q
自相关:
H
(
Z
)
H(Z)
H(Z)的复谱:
R
h
(
z
)
=
H
(
z
)
H
(
1
z
∗
)
=
D
(
z
)
D
(
1
/
z
∗
)
A
(
z
)
A
(
1
/
z
∗
)
=
R
d
(
z
)
R
a
(
z
)
R_h(z)=H(z)H(\frac{1}{z^{*}})=\frac{D(z)D(1/z^{*})}{A(z)A(1/z^{*})}=\frac{R_d(z)}{R_a(z)}
Rh(z)=H(z)H(z∗1)=A(z)A(1/z∗)D(z)D(1/z∗)=Ra(z)Rd(z)
对于自相关序列
r
h
(
l
)
r_h(l)
rh(l),有:
∑
k
=
0
P
a
k
r
h
(
l
−
k
)
=
0
,
l
>
Q
\sum_{k=0}^{P}a_kr_h(l-k)=0,l>Q
k=0∑Pakrh(l−k)=0,l>Q,写成矩阵形式为:
[
r
h
(
Q
)
r
h
(
Q
+
1
)
⋯
r
h
(
Q
+
P
−
1
)
r
h
∗
(
Q
−
1
)
r
h
(
Q
)
⋯
r
h
(
Q
+
P
−
2
)
⋮
⋮
⋱
⋮
r
h
∗
(
Q
−
P
+
1
)
r
h
∗
(
Q
−
P
+
2
)
⋯
r
h
(
Q
)
]
[
a
1
a
2
⋮
a
p
]
=
[
∣
r
h
(
Q
−
1
)
r
h
(
Q
−
2
)
⋮
r
h
(
Q
−
P
)
]
\left[\begin{matrix} r_{h}(Q) & r_{h}(Q+1) & \cdots & r_{h}(Q+P-1) \\ r^{*}_{h}(Q-1) & r_{h}(Q) & \cdots & r_{h}(Q+P-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{h} ^{*}(Q-P+1) & r_{h}^{*}(Q-P+2) & \cdots & r_{h}(Q) \end{matrix}\right] \left[ \begin{matrix} a_{1} \\ a_{2} \\ \vdots \\ a_{p} \end{matrix}\right]=\left[\begin{matrix}|r_h(Q-1) \\ r_h(Q-2) \\ \vdots \\ r_h(Q-P)\end{matrix}\right]
⎣⎢⎢⎢⎡rh(Q)rh∗(Q−1)⋮rh∗(Q−P+1)rh(Q+1)rh(Q)⋮rh∗(Q−P+2)⋯⋯⋱⋯rh(Q+P−1)rh(Q+P−2)⋮rh(Q)⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡a1a2⋮ap⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡∣rh(Q−1)rh(Q−2)⋮rh(Q−P)⎦⎥⎥⎥⎤
同时有:
r
a
(
l
)
=
∑
k
=
0
P
−
∣
l
∣
a
k
a
k
+
∣
l
∣
∗
,
−
P
≤
l
≤
P
r_a(l)=\sum^{P-|l|}_{k=0}a_ka^{*}_{k+|l|},-P\le l \le P
ra(l)=k=0∑P−∣l∣akak+∣l∣∗,−P≤l≤P因为
R
d
(
z
)
=
R
a
(
z
)
R
h
(
z
)
R_d(z)=R_a(z)R_h(z)
Rd(z)=Ra(z)Rh(z),所以有:
r
d
(
l
)
=
∑
k
=
−
P
P
r
a
(
k
)
r
h
(
l
−
k
)
r_d(l)=\sum_{k=-P}^{P}r_a(k)r_h(l-k)
rd(l)=k=−P∑Pra(k)rh(l−k)