kmp算法:
这个算法可以大大避免重复便利的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。
这个算法的基本原理。首先我们先不讲代码,这样很难理解,我们还是从一些例子出发。假设S=“abcdefgab”,T=“abcdex",如果说我们按照之前的算法,我们发现知道第六个字母,两个串才不相等,接下来,我们会让j=1,但是i=2开始继续比较,这样一直下去,但是加入我们细心会发现对于T来说,它的所有字符均不相等,但是与S串前几个又相等,那么我们这样做就是在做无用功。根据以上的原理得到KMP算法的核心:避免没有必要的回溯,从而来提高匹配的效率。从上面的介绍我们知道这种回溯与i没有关系,我们只要需要知道j的回溯规律就可以高效的完成匹配,j值的变化有串T中是否有重复相关。j值的多少取决于当前字符之前的前后缀的相似度。
我们将T串个位置的j值的变化定义为一个数组next,那么next的长度就是T的长度。
分析:由next公式可知:
当j=1时,next[j]=0;
当j=2时,由1<k<j可得 1<k<2,因为k是整数,所以,属于第三种情况(其他情况),所以next[j]=1;
当j>2时,next[j]=k, k-1=前一个的公有元素个数;
所以,next[3] = 1+0 =1;
next[4] = 1+1 =2;
next[5] = 1+1 =2;
next[6] = 1+2 = 3;
next[7] = 1+0 = 1;
next[8] = 1+1 = 2;
KMP算法是在已知的模式串中的next函数值上执行的,因为函数值仅仅取决于模式串本身而和主串没有关系,所以我们可以从定义出发,用递推的方法球next的值.
void getnext(string t,int next[])
{int i=1,
int j=0;
next[1]=0;
while(i<t[0]) //t[0]表示串t的长度
{
if(j==0||t[i]==t[j])
{
++i;++j;next[i]=j;}else{j=next[j];} } }
上面这个求next数组时,当串为aaaab和主串aaabaaaab匹配是会有一些问题,所以我们可以继续改进
void getnext(char *t,int *next)
{
int i,j;
i=1;
j=0;
next[1]=0;
while(i<strlen(t))
{
if(j==0||t[i]==t[j])
{
++i;++j;
if(t[i]!=t[j])
{
next[i]=j;
}
else
{
next[i]=next[j];
}
}
else
{
j=next[j];
}
}
}
所以整体而言上面二个next数组函数都是可以运用在KMP算法中的
int KMP(char *s,char *t)
{
int i=0;
int j=0;
int next[256];
getnext(t,next);
while(i<strlen(s)&&j<strlen(t))
{
if(j==0||s[i]==t[j])
{
++i;
++j;
}
else j=next[j];
}
if(j==strlen(t))
return i-j;
else
return 0;
}