论文阅读 GANSpace:《GANSpace: Discovering Interpretable GAN Controls》

在这里插入图片描述
收录:NIPS2020
地址:https://arxiv.org/abs/2004.02546


摘要

我们基于主成分分析(PCA)在潜在空间或特征空间中识别重要的潜在方向。然后,我们证明了大量的可解释控制可以通过沿主方向的逐层扰动来定义。

提示:以下是本篇文章正文内容,下面案例可供参考

一、介绍

  1. 我们证明了在GAN潜在空间中应用主成分分析(PCA)可以在StyleGAN的潜在空间和BigGAN的特征空间中找到重要的方向。
  2. 我们展示了如何修改BigGAN以允许类似StyleGAN的分层风格混合和控制,而无需再培训
  3. 利用这些思想,我们证明了PCA编辑方向的分层分解可以产生许多可解释的控件。
  4. 效果如图1
    在这里插入图片描述
图1:使用我们的方法发现的控件执行的图像编辑序列,应用于三个不同的GAN。白色插图使用第2节中解释的符号指定编辑。

二、发现GAN控件

2.1 背景

在BigGAN模型[5]中,中间层也将潜在向量作为输入:
y i = G i ( y i − 1 , z ) \mathbf{y}_{i}=G_{i}\left(\mathbf{y}_{i-1}, \mathbf{z}\right) yi=Gi(yi1

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平什么阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值