收录:NIPS2020
地址:https://arxiv.org/abs/2004.02546
文章目录
摘要
我们基于主成分分析(PCA)在潜在空间或特征空间中识别重要的潜在方向。然后,我们证明了大量的可解释控制可以通过沿主方向的逐层扰动来定义。
提示:以下是本篇文章正文内容,下面案例可供参考
一、介绍
- 我们证明了在GAN潜在空间中应用主成分分析(PCA)可以在StyleGAN的潜在空间和BigGAN的特征空间中找到重要的方向。
- 我们展示了如何修改BigGAN以允许类似StyleGAN的分层风格混合和控制,而无需再培训
- 利用这些思想,我们证明了PCA编辑方向的分层分解可以产生许多可解释的控件。
- 效果如图1
二、发现GAN控件
2.1 背景
在BigGAN模型[5]中,中间层也将潜在向量作为输入:
y i = G i ( y i − 1 , z ) \mathbf{y}_{i}=G_{i}\left(\mathbf{y}_{i-1}, \mathbf{z}\right) yi=Gi(yi−1