文章目录
预备定义
- 上、下阶乘
约定 ( x ) 0 = ( x ) 0 = 1 (x)^0=(x)_0=1 (x)0=(x)0=1,则 k ⩾ 1 k\geqslant1 k⩾1时有
k k k次上阶乘: ( x ) k = x ( x + 1 ) ( x + 2 ) ⋯ ( x + k − 1 ) (x)^k=x(x+1)(x+2)\cdots(x+k-1) (x)k=x(x+1)(x+2)⋯(x+k−1),
k k k次下阶乘: ( x ) k = x ( x − 1 ) ( x − 2 ) ⋯ ( x − k + 1 ) (x)_k=x(x-1)(x-2)\cdots(x-k+1) (x)k=x(x−1)(x−2)⋯(x−k+1), - 上、下阶乘的关系: ( − x ) n = ( − 1 ) n ( x ) n (-x)_n=(-1)^n(x)^n (−x)n=(−1)n(x)n, ( − x ) n = ( − 1 ) n ( x ) n (-x)^n=(-1)^n(x)_n (−x)n=(−1)n(x)n
- 广义牛顿二项式定理:
(
x
+
y
)
α
=
∑
k
=
0
∞
(
α
k
)
x
α
−
k
y
k
(x+y)^\alpha=\sum_{k=0}^{\infty} {\binom{\alpha}{k}x^{\alpha-k}y^{k}}
(x+y)α=k=0∑∞(kα)xα−kyk
其中 ( α k ) = α ( α − 1 ) … ( α − k + 1 ) k ! = ( α ) k k ! \color{red}\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k !}=\frac{(\alpha)_{k}}{k !} (kα)=k!α(α−1)…(α−k+1)=k!(α)k
第一类 S t i r l i n g Stirling Stirling数 s ( n , k ) s(n,k) s(n,k)及第一类无符号 S t i r l i n g Stirling Stirling数 c ( n , k ) c(n,k) c(n,k)
定义
-
第一类(带符号) S t i r l i n g Stirling Stirling数 s ( n , k ) s(n,k) s(n,k):
( x ) n = x ( x − 1 ) ( x − 2 ) ⋯ ( x − n + 1 ) = ∑ k = 0 n s ( n , k ) x k (x)_n=x(x-1)(x-2)\cdots(x-n+1)=\sum_{k=0}^{n}{s(n,k)x^k} (x)n=x(x−1)(x−2)⋯(x−n+1)=k=0∑ns(n,k)xk -
第一类无符号 S t i r l i n g Stirling Stirling数 c ( n , k ) c(n,k) c(n,k):
( x ) n = x ( x + 1 ) ( x + 2 ) ⋯ ( x + n − 1 ) = ∑ k = 0 n c ( n , k ) x k (x)^n=x(x+1)(x+2)\cdots(x+n-1)=\sum_{k=0}^{n}{c(n,k)x^k} (x)n=x(x+1)(x+2)⋯(x+n−1)=k=0∑nc(n,k)xk
常用性质
- s ( 0 , 0 ) = c ( 0 , 0 ) = 1 s(0, 0) = c(0, 0) = 1 s(0,0)=c(0,0)=1
- s ( n , n ) = c ( n , n ) = 1 s(n, n) = c(n, n) = 1 s(n,n)=c(n,n)=1
- s ( n , 0 ) = c ( n , 0 ) = 0 , n ∈ Z + s(n, 0) = c(n, 0) = 0 , n \in \mathbb{Z^+} s(n,0)=c(n,0)=0,n∈Z+
- s ( n , k ) = 0 s(n, k)=0 s(n,k)=0, i f k > n ⩾ 1 if \ \ k>n \geqslant 1 if k>n⩾1
- s ( n , k ) = ( − 1 ) n + k c ( n , k ) , n ⩾ k ⩾ 0 s(n, k) = (-1)^{n+k}c(n,k), n \geqslant k \geqslant 0 s(n,k)=(−1)n+kc(n,k),n⩾k⩾0
- 递推性质:
对 ∀ n ⩾ 1 , k ⩾ 1 \forall n \geqslant 1,k \geqslant 1 ∀n⩾1,k⩾1, c ( n , k ) c(n, k) c(n,k)满足:
c ( n , k ) = ( n − 1 ) c ( n − 1 , k ) + c ( n − 1 , k − 1 ) c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1) c(n,k)=(n−1)c(n−1,k)+c(n−1,k−1)
生成函数及其推导
普通型生成函数
设
s
(
n
,
k
)
s(n, k)
s(n,k)普通型生成函数为
F
s
(
k
)
(
x
)
\mathbf{F}_{s}^{(k)}(x)
Fs(k)(x),则由定义可得:
x
d
F
s
(
k
)
(
x
)
d
x
+
1
x
F
s
(
k
)
(
x
)
=
F
s
(
k
−
1
)
(
x
)
x \frac{\mathbf{d} \mathbf{F}_{s}^{(k)}(x)}{\mathbf{d} x}+\frac{1}{x} \mathbf{F}_{s}^{(k)}(x)=\mathbf{F}_{s}^{(k-1)}(x)
xdxdFs(k)(x)+x1Fs(k)(x)=Fs(k−1)(x)
此方程不易求解。
指数型生成函数
第一类带符号 S t i r l i n g Stirling Stirling数 s ( n , k ) s(n,k) s(n,k)
G
e
(
s
(
n
,
k
)
)
=
∑
n
⩾
k
s
(
n
,
k
)
⋅
x
n
n
!
=
[
ln
(
1
+
x
)
]
k
k
!
\mathbf{G}_{e}(s(n,k))=\sum_{n\geqslant k} s(n, k) \cdot \frac{x^{n}}{n !}=\frac{[\ln (1+x)]^{k}}{k !}
Ge(s(n,k))=n⩾k∑s(n,k)⋅n!xn=k![ln(1+x)]k
证明:
我们考虑二项式的
(
1
+
x
)
z
(1+x)^{z}
(1+x)z的展开式,有:
(
1
+
x
)
z
=
e
z
ln
(
1
+
x
)
=
∑
k
⩾
0
[
ln
(
1
+
x
)
]
k
k
!
z
k
(1+x)^{z}=e^{z \ln (1+x)}=\sum_{k \geqslant 0} \frac{[\ln (1+x)]^{k}}{k !} z^{k}
(1+x)z=ezln(1+x)=k⩾0∑k![ln(1+x)]kzk
另一方面,我们有:
(
1
+
x
)
z
=
∑
n
⩾
0
(
z
n
)
x
n
=
∑
n
⩾
0
(
z
)
n
x
n
n
!
,
(1+x)^{z}=\sum_{n \geqslant 0}\binom{z}{n} x^{n}=\sum_{n \geqslant 0}(z)_{n} \frac{x^{n}}{n !},
(1+x)z=n⩾0∑(nz)xn=n⩾0∑(z)nn!xn,
代入
s
(
n
,
k
)
s(n,k)
s(n,k)定义得:
(
1
+
x
)
z
=
∑
n
⩾
0
(
z
)
n
x
n
n
!
=
∑
n
⩾
0
∑
k
=
0
n
s
(
n
,
k
)
z
k
x
n
n
!
=
∑
k
⩾
0
[
∑
n
⩾
k
s
(
n
,
k
)
x
n
n
!
]
z
k
=
∑
k
⩾
0
E
s
(
k
)
(
x
)
z
k
,
\begin{aligned} (1+x)^{z} &=\sum_{n \geqslant 0}(z)^{n} \frac{x^{n}}{n !}=\sum_{n \geqslant 0} \sum_{k=0}^{n} s(n, k) z^{k} \frac{x^{n}}{n !} \\ &=\sum_{k \geqslant 0}\left[\sum_{n \geqslant k} s(n, k) \frac{x^{n}}{n !}\right] z^{k}=\sum_{k \geqslant 0} \mathbf{E}_{s}^{(k)}(x) z^{k}, \end{aligned}
(1+x)z=n⩾0∑(z)nn!xn=n⩾0∑k=0∑ns(n,k)zkn!xn=k⩾0∑[n⩾k∑s(n,k)n!xn]zk=k⩾0∑Es(k)(x)zk,
由上述两个式子,可得到:
E
s
(
k
)
(
x
)
=
[
ln
(
1
+
x
)
]
k
k
!
,
\mathbf{E}_{s}^{(k)}(x)=\frac{[\ln (1+x)]^{k}}{k !},
Es(k)(x)=k![ln(1+x)]k,证毕。
第一类无符号 S t i r l i n g Stirling Stirling数 c ( n , k ) c(n,k) c(n,k)
G
e
(
c
(
n
,
k
)
)
=
∑
n
⩾
k
c
(
n
,
k
)
⋅
x
n
n
!
=
[
−
ln
(
1
−
x
)
]
k
k
!
\mathbf{G}_{e}(c(n,k))=\sum_{n \geqslant k} c(n, k) \cdot \frac{x^{n}}{n !}=\frac{[-\ln (1-x)]^{k}}{k !}
Ge(c(n,k))=n⩾k∑c(n,k)⋅n!xn=k![−ln(1−x)]k
证明:
我们考虑二项式的
(
1
−
x
)
−
z
(1-x)^{-z}
(1−x)−z的展开式,有:
(
1
−
x
)
−
z
=
e
−
z
ln
(
1
−
x
)
=
∑
k
⩾
0
[
−
ln
(
1
−
x
)
]
k
k
!
z
k
,
(1-x)^{-z}=e^{-z \ln (1-x)}=\sum_{k \geqslant 0} \frac{[-\ln (1-x)]^{k}}{k !} z^{k},
(1−x)−z=e−zln(1−x)=k⩾0∑k![−ln(1−x)]kzk,
另一方面,我们有:
(
1
−
x
)
−
z
=
∑
n
⩾
0
(
−
z
n
)
(
−
1
)
n
x
n
=
∑
n
⩾
0
(
z
)
n
x
n
n
!
,
(1-x)^{-z}=\sum_{n \geqslant 0}\binom{-z}{n}(-1)^{n} x^{n}=\sum_{n \geqslant 0}(z)^{n} \frac{x^{n}}{n !},
(1−x)−z=n⩾0∑(n−z)(−1)nxn=n⩾0∑(z)nn!xn,
代入
c
(
n
,
k
)
c(n,k)
c(n,k)定义得:
(
1
−
x
)
−
z
=
∑
n
⩾
0
(
z
)
n
x
n
n
!
=
∑
n
⩾
0
∑
k
=
0
n
c
(
n
,
k
)
z
k
x
n
n
!
=
∑
k
⩾
0
[
∑
n
⩾
k
c
(
n
,
k
)
x
n
n
!
]
z
k
=
∑
k
⩾
0
E
c
(
k
)
(
x
)
z
k
,
\begin{aligned} (1-x)^{-z} &=\sum_{n \geqslant 0}(z)^{n} \frac{x^{n}}{n !}=\sum_{n \geqslant 0} \sum_{k=0}^{n} c(n, k) z^{k} \frac{x^{n}}{n !} \\ &=\sum_{k \geqslant 0}\left[\sum_{n \geqslant k} c(n, k) \frac{x^{n}}{n !}\right] z^{k}=\sum_{k \geqslant 0} \mathbf{E}_{c}^{(k)}(x) z^{k}, \end{aligned}
(1−x)−z=n⩾0∑(z)nn!xn=n⩾0∑k=0∑nc(n,k)zkn!xn=k⩾0∑[n⩾k∑c(n,k)n!xn]zk=k⩾0∑Ec(k)(x)zk,
由上述两个式子,可得到:
E
c
(
k
)
(
x
)
=
[
−
ln
(
1
−
x
)
]
k
k
!
,
\mathbf{E}_{c}^{(k)}(x)=\frac{[-\ln (1-x)]^{k}}{k !},
Ec(k)(x)=k![−ln(1−x)]k,证毕。
第二类 S t i r l i n g Stirling Stirling数
定义
∑ k = 1 n S ( n , k ) x ( x − 1 ) ( x − 2 ) ⋯ ( x − k + 1 ) = ∑ k = 1 n S ( n , k ) ( x ) k = x n \sum_{k=1}^{n} S(n, k)x(x-1)(x-2)\cdots(x-k+1)=\sum_{k=1}^{n} S(n, k)(x)_{k}=x^{n} k=1∑nS(n,k)x(x−1)(x−2)⋯(x−k+1)=k=1∑nS(n,k)(x)k=xn
常用性质
- S ( n , 0 ) = S ( 0 , n ) = 0 , n ⩾ 1 S(n, 0)=S(0, n)=0, n \geqslant 1 S(n,0)=S(0,n)=0,n⩾1
- S ( n , n ) = 1 , n ⩾ 0 S(n, n)=1, n \geqslant 0 S(n,n)=1,n⩾0
- S ( n , 1 ) = 1 , n ⩾ 1 S(n, 1)=1, n \geqslant 1 S(n,1)=1,n⩾1
- S ( n , k ) = 0 S(n, k)=0 S(n,k)=0, i f k > n ⩾ 1 if \ \ k>n \geqslant 1 if k>n⩾1
- 递推性质:
对 ∀ n ⩾ 1 , k ⩾ 1 \forall n \geqslant 1,k \geqslant 1 ∀n⩾1,k⩾1, S ( n , k ) S(n, k) S(n,k)满足: S ( n , k ) = k S ( n − 1 , k ) + S ( n − 1 , k − 1 ) S(n, k)=k S(n-1, k)+S(n-1, k-1) S(n,k)=kS(n−1,k)+S(n−1,k−1) - S ( n , k ) = 1 k ! ∑ i = 0 k ( − 1 ) i ( k i ) ( k − i ) n S(n, k)=\frac{1}{k !} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n} S(n,k)=k!1i=0∑k(−1)i(ik)(k−i)n
生成函数及其推导
普通型生成函数
G
0
(
S
(
n
,
k
)
)
=
∑
n
⩾
k
S
(
n
,
k
)
x
n
=
x
k
(
1
−
x
)
(
1
−
2
x
)
⋯
(
1
−
k
x
)
=
x
k
∏
r
=
1
k
(
1
−
r
x
)
\mathbf{G}_{0}(S(n,k))=\sum_{n \geqslant k} S(n, k) x^{n}=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)}=\frac{x^k}{\prod_{r=1}^k{(1-rx)}}
G0(S(n,k))=n⩾k∑S(n,k)xn=(1−x)(1−2x)⋯(1−kx)xk=∏r=1k(1−rx)xk
证明[1]:
令
B
k
(
x
)
=
∑
n
⩾
k
S
(
n
,
k
)
x
n
,
B_{k}(x)=\sum_{n \geqslant k} S(n, k) x^{n},
Bk(x)=∑n⩾kS(n,k)xn,
由上述递推关系,两边同乘以
x
n
x^n
xn,并对
n
n
n从
k
k
k到
+
∞
+\infty
+∞求和,结合生成函数定义,得:
B
k
(
x
)
=
x
B
k
−
1
(
x
)
+
k
x
B
k
(
x
)
,
B_{k}(x)=x B_{k-1}(x)+k x B_{k}(x),
Bk(x)=xBk−1(x)+kxBk(x),于是我们得到:
B
k
(
x
)
=
x
B
k
−
1
(
x
)
1
−
k
x
=
x
2
B
k
−
2
(
x
)
(
1
−
k
x
)
(
1
−
(
k
−
1
)
x
)
=
…
=
x
k
∏
r
=
1
k
(
1
−
r
x
)
B_{k}(x)=\frac{x B_{k-1}(x)}{1-k x}=\frac{x^{2} B_{k-2}(x)}{(1-k x)(1-(k-1) x)}=\ldots=\frac{x^{k}}{\prod_{r=1}^{k}(1-r x)}
Bk(x)=1−kxxBk−1(x)=(1−kx)(1−(k−1)x)x2Bk−2(x)=…=∏r=1k(1−rx)xk
指数型生成函数
G
e
(
S
(
n
,
k
)
)
=
∑
n
⩾
k
S
(
n
,
k
)
⋅
x
n
n
!
=
(
e
x
−
1
)
k
k
!
\mathbf{G}_{e}(S(n,k))=\sum_{n \geqslant k} S(n, k) \cdot \frac{x^{n}}{n !}=\frac{\left(e^{x}-1\right)^{k}}{k !}
Ge(S(n,k))=n⩾k∑S(n,k)⋅n!xn=k!(ex−1)k
证明[2]:
根据上述性质6可得:
∑
n
=
0
∞
S
(
n
,
k
)
n
!
x
n
=
∑
n
=
0
∞
1
k
!
∑
j
=
0
k
(
k
j
)
j
n
(
−
1
)
k
−
j
x
n
n
!
=
∑
j
=
0
k
(
−
1
)
k
−
j
1
k
!
(
k
j
)
∑
n
=
0
∞
j
n
x
n
n
!
=
∑
j
=
0
k
(
−
1
)
k
−
j
1
k
!
(
k
j
)
e
j
x
=
1
k
!
∑
j
=
0
k
(
k
j
)
(
e
x
)
j
(
−
1
)
k
−
j
=
(
e
x
−
1
)
k
k
!
\begin{aligned} \sum_{n=0}^{\infty} \frac{S(n, k)}{n !} x^{n} & = \sum_{n=0}^{\infty} \frac{1}{k !} \sum_{j=0}^{k}\binom{k}{j} j^{n}(-1)^{k-j} \frac{x^{n}}{n !}\\ & =\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k !}\binom{k}{j} \sum_{n=0}^{\infty} j^{n} \frac{x^{n}}{n !} \\ & =\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k !}\binom{k}{j} \mathrm{e}^{j x} \\ & =\frac{1}{k !} \sum_{j=0}^{k}\binom{k}{j}\left(\mathrm{e}^{x}\right)^{j}(-1)^{k-j} \\ & =\frac{\left(\mathrm{e}^{x}-1\right)^{k}}{k !} \end{aligned}
n=0∑∞n!S(n,k)xn=n=0∑∞k!1j=0∑k(jk)jn(−1)k−jn!xn=j=0∑k(−1)k−jk!1(jk)n=0∑∞jnn!xn=j=0∑k(−1)k−jk!1(jk)ejx=k!1j=0∑k(jk)(ex)j(−1)k−j=k!(ex−1)k
参考文献
[1] Ordinary Generating Function for The Second Kind of Stirling Number
[2] 冯荣权,宋春伟.组合数学.北京:北京大学出版社,2015.107页