第一、二类斯特林(Stirling)数的生成函数(母函数)及推导

本文深入探讨了斯特林数的定义、性质与应用,包括第一类和第二类斯特林数的生成函数、递推公式和常见性质,适用于组合数学研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预备定义

  1. 上、下阶乘
    约定 ( x ) 0 = ( x ) 0 = 1 (x)^0=(x)_0=1 (x)0=(x)0=1,则 k ⩾ 1 k\geqslant1 k1时有
    k k k次上阶乘: ( x ) k = x ( x + 1 ) ( x + 2 ) ⋯ ( x + k − 1 ) (x)^k=x(x+1)(x+2)\cdots(x+k-1) (x)k=x(x+1)(x+2)(x+k1)
    k k k次下阶乘: ( x ) k = x ( x − 1 ) ( x − 2 ) ⋯ ( x − k + 1 ) (x)_k=x(x-1)(x-2)\cdots(x-k+1) (x)k=x(x1)(x2)(xk+1)
  2. 上、下阶乘的关系: ( − x ) n = ( − 1 ) n ( x ) n (-x)_n=(-1)^n(x)^n (x)n=(1)n(x)n ( − x ) n = ( − 1 ) n ( x ) n (-x)^n=(-1)^n(x)_n (x)n=(1)n(x)n
  3. 广义牛顿二项式定理: ( x + y ) α = ∑ k = 0 ∞ ( α k ) x α − k y k (x+y)^\alpha=\sum_{k=0}^{\infty} {\binom{\alpha}{k}x^{\alpha-k}y^{k}} (x+y)α=k=0(kα)xαkyk
    其中 ( α k ) = α ( α − 1 ) … ( α − k + 1 ) k ! = ( α ) k k ! \color{red}\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k !}=\frac{(\alpha)_{k}}{k !} (kα)=k!α(α1)(αk+1)=k!(α)k

第一类 S t i r l i n g Stirling Stirling s ( n , k ) s(n,k) s(n,k)及第一类无符号 S t i r l i n g Stirling Stirling c ( n , k ) c(n,k) c(n,k)

定义

  1. 第一类(带符号) S t i r l i n g Stirling Stirling s ( n , k ) s(n,k) s(n,k)
    ( x ) n = x ( x − 1 ) ( x − 2 ) ⋯ ( x − n + 1 ) = ∑ k = 0 n s ( n , k ) x k (x)_n=x(x-1)(x-2)\cdots(x-n+1)=\sum_{k=0}^{n}{s(n,k)x^k} (x)n=x(x1)(x2)(xn+1)=k=0ns(n,k)xk

  2. 第一类无符号 S t i r l i n g Stirling Stirling c ( n , k ) c(n,k) c(n,k):
    ( x ) n = x ( x + 1 ) ( x + 2 ) ⋯ ( x + n − 1 ) = ∑ k = 0 n c ( n , k ) x k (x)^n=x(x+1)(x+2)\cdots(x+n-1)=\sum_{k=0}^{n}{c(n,k)x^k} (x)n=x(x+1)(x+2)(x+n1)=k=0nc(n,k)xk

常用性质

  1. s ( 0 , 0 ) = c ( 0 , 0 ) = 1 s(0, 0) = c(0, 0) = 1 s(0,0)=c(0,0)=1
  2. s ( n , n ) = c ( n , n ) = 1 s(n, n) = c(n, n) = 1 s(n,n)=c(n,n)=1
  3. s ( n , 0 ) = c ( n , 0 ) = 0 , n ∈ Z + s(n, 0) = c(n, 0) = 0 , n \in \mathbb{Z^+} s(n,0)=c(n,0)=0,nZ+
  4. s ( n , k ) = 0 s(n, k)=0 s(n,k)=0 i f    k > n ⩾ 1 if \ \ k>n \geqslant 1 if  k>n1
  5. s ( n , k ) = ( − 1 ) n + k c ( n , k ) , n ⩾ k ⩾ 0 s(n, k) = (-1)^{n+k}c(n,k), n \geqslant k \geqslant 0 s(n,k)=(1)n+kc(n,k),nk0
  6. 递推性质:
    ∀ n ⩾ 1 , k ⩾ 1 \forall n \geqslant 1,k \geqslant 1 n1,k1 c ( n , k ) c(n, k) c(n,k)满足:
    c ( n , k ) = ( n − 1 ) c ( n − 1 , k ) + c ( n − 1 , k − 1 ) c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1) c(n,k)=(n1)c(n1,k)+c(n1,k1)

生成函数及其推导

普通型生成函数

s ( n , k ) s(n, k) s(n,k)普通型生成函数为 F s ( k ) ( x ) \mathbf{F}_{s}^{(k)}(x) Fs(k)(x),则由定义可得:
x d F s ( k ) ( x ) d x + 1 x F s ( k ) ( x ) = F s ( k − 1 ) ( x ) x \frac{\mathbf{d} \mathbf{F}_{s}^{(k)}(x)}{\mathbf{d} x}+\frac{1}{x} \mathbf{F}_{s}^{(k)}(x)=\mathbf{F}_{s}^{(k-1)}(x) xdxdFs(k)(x)+x1Fs(k)(x)=Fs(k1)(x)
此方程不易求解。

指数型生成函数

第一类带符号 S t i r l i n g Stirling Stirling s ( n , k ) s(n,k) s(n,k)

G e ( s ( n , k ) ) = ∑ n ⩾ k s ( n , k ) ⋅ x n n ! = [ ln ⁡ ( 1 + x ) ] k k ! \mathbf{G}_{e}(s(n,k))=\sum_{n\geqslant k} s(n, k) \cdot \frac{x^{n}}{n !}=\frac{[\ln (1+x)]^{k}}{k !} Ge(s(n,k))=nks(n,k)n!xn=k![ln(1+x)]k
证明:
我们考虑二项式的 ( 1 + x ) z (1+x)^{z} (1+x)z的展开式,有:
( 1 + x ) z = e z ln ⁡ ( 1 + x ) = ∑ k ⩾ 0 [ ln ⁡ ( 1 + x ) ] k k ! z k (1+x)^{z}=e^{z \ln (1+x)}=\sum_{k \geqslant 0} \frac{[\ln (1+x)]^{k}}{k !} z^{k} (1+x)z=ezln(1+x)=k0k![ln(1+x)]kzk
另一方面,我们有:
( 1 + x ) z = ∑ n ⩾ 0 ( z n ) x n = ∑ n ⩾ 0 ( z ) n x n n ! , (1+x)^{z}=\sum_{n \geqslant 0}\binom{z}{n} x^{n}=\sum_{n \geqslant 0}(z)_{n} \frac{x^{n}}{n !}, (1+x)z=n0(nz)xn=n0(z)nn!xn,
代入 s ( n , k ) s(n,k) s(n,k)定义得:
( 1 + x ) z = ∑ n ⩾ 0 ( z ) n x n n ! = ∑ n ⩾ 0 ∑ k = 0 n s ( n , k ) z k x n n ! = ∑ k ⩾ 0 [ ∑ n ⩾ k s ( n , k ) x n n ! ] z k = ∑ k ⩾ 0 E s ( k ) ( x ) z k , \begin{aligned} (1+x)^{z} &=\sum_{n \geqslant 0}(z)^{n} \frac{x^{n}}{n !}=\sum_{n \geqslant 0} \sum_{k=0}^{n} s(n, k) z^{k} \frac{x^{n}}{n !} \\ &=\sum_{k \geqslant 0}\left[\sum_{n \geqslant k} s(n, k) \frac{x^{n}}{n !}\right] z^{k}=\sum_{k \geqslant 0} \mathbf{E}_{s}^{(k)}(x) z^{k}, \end{aligned} (1+x)z=n0(z)nn!xn=n0k=0ns(n,k)zkn!xn=k0[nks(n,k)n!xn]zk=k0Es(k)(x)zk,
由上述两个式子,可得到:
E s ( k ) ( x ) = [ ln ⁡ ( 1 + x ) ] k k ! , \mathbf{E}_{s}^{(k)}(x)=\frac{[\ln (1+x)]^{k}}{k !}, Es(k)(x)=k![ln(1+x)]k,证毕。

第一类无符号 S t i r l i n g Stirling Stirling c ( n , k ) c(n,k) c(n,k)

G e ( c ( n , k ) ) = ∑ n ⩾ k c ( n , k ) ⋅ x n n ! = [ − ln ⁡ ( 1 − x ) ] k k ! \mathbf{G}_{e}(c(n,k))=\sum_{n \geqslant k} c(n, k) \cdot \frac{x^{n}}{n !}=\frac{[-\ln (1-x)]^{k}}{k !} Ge(c(n,k))=nkc(n,k)n!xn=k![ln(1x)]k
证明:
我们考虑二项式的 ( 1 − x ) − z (1-x)^{-z} (1x)z的展开式,有:
( 1 − x ) − z = e − z ln ⁡ ( 1 − x ) = ∑ k ⩾ 0 [ − ln ⁡ ( 1 − x ) ] k k ! z k , (1-x)^{-z}=e^{-z \ln (1-x)}=\sum_{k \geqslant 0} \frac{[-\ln (1-x)]^{k}}{k !} z^{k}, (1x)z=ezln(1x)=k0k![ln(1x)]kzk,
另一方面,我们有:
( 1 − x ) − z = ∑ n ⩾ 0 ( − z n ) ( − 1 ) n x n = ∑ n ⩾ 0 ( z ) n x n n ! , (1-x)^{-z}=\sum_{n \geqslant 0}\binom{-z}{n}(-1)^{n} x^{n}=\sum_{n \geqslant 0}(z)^{n} \frac{x^{n}}{n !}, (1x)z=n0(nz)(1)nxn=n0(z)nn!xn,
代入 c ( n , k ) c(n,k) c(n,k)定义得:
( 1 − x ) − z = ∑ n ⩾ 0 ( z ) n x n n ! = ∑ n ⩾ 0 ∑ k = 0 n c ( n , k ) z k x n n ! = ∑ k ⩾ 0 [ ∑ n ⩾ k c ( n , k ) x n n ! ] z k = ∑ k ⩾ 0 E c ( k ) ( x ) z k , \begin{aligned} (1-x)^{-z} &=\sum_{n \geqslant 0}(z)^{n} \frac{x^{n}}{n !}=\sum_{n \geqslant 0} \sum_{k=0}^{n} c(n, k) z^{k} \frac{x^{n}}{n !} \\ &=\sum_{k \geqslant 0}\left[\sum_{n \geqslant k} c(n, k) \frac{x^{n}}{n !}\right] z^{k}=\sum_{k \geqslant 0} \mathbf{E}_{c}^{(k)}(x) z^{k}, \end{aligned} (1x)z=n0(z)nn!xn=n0k=0nc(n,k)zkn!xn=k0[nkc(n,k)n!xn]zk=k0Ec(k)(x)zk,
由上述两个式子,可得到:
E c ( k ) ( x ) = [ − ln ⁡ ( 1 − x ) ] k k ! , \mathbf{E}_{c}^{(k)}(x)=\frac{[-\ln (1-x)]^{k}}{k !}, Ec(k)(x)=k![ln(1x)]k,证毕。

第二类 S t i r l i n g Stirling Stirling

定义

∑ k = 1 n S ( n , k ) x ( x − 1 ) ( x − 2 ) ⋯ ( x − k + 1 ) = ∑ k = 1 n S ( n , k ) ( x ) k = x n \sum_{k=1}^{n} S(n, k)x(x-1)(x-2)\cdots(x-k+1)=\sum_{k=1}^{n} S(n, k)(x)_{k}=x^{n} k=1nS(n,k)x(x1)(x2)(xk+1)=k=1nS(n,k)(x)k=xn

常用性质

  1. S ( n , 0 ) = S ( 0 , n ) = 0 , n ⩾ 1 S(n, 0)=S(0, n)=0, n \geqslant 1 S(n,0)=S(0,n)=0,n1
  2. S ( n , n ) = 1 , n ⩾ 0 S(n, n)=1, n \geqslant 0 S(n,n)=1,n0
  3. S ( n , 1 ) = 1 , n ⩾ 1 S(n, 1)=1, n \geqslant 1 S(n,1)=1,n1
  4. S ( n , k ) = 0 S(n, k)=0 S(n,k)=0 i f    k > n ⩾ 1 if \ \ k>n \geqslant 1 if  k>n1
  5. 递推性质:
    ∀ n ⩾ 1 , k ⩾ 1 \forall n \geqslant 1,k \geqslant 1 n1,k1 S ( n , k ) S(n, k) S(n,k)满足: S ( n , k ) = k S ( n − 1 , k ) + S ( n − 1 , k − 1 ) S(n, k)=k S(n-1, k)+S(n-1, k-1) S(n,k)=kS(n1,k)+S(n1,k1)
  6. S ( n , k ) = 1 k ! ∑ i = 0 k ( − 1 ) i ( k i ) ( k − i ) n S(n, k)=\frac{1}{k !} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n} S(n,k)=k!1i=0k(1)i(ik)(ki)n

生成函数及其推导

普通型生成函数

G 0 ( S ( n , k ) ) = ∑ n ⩾ k S ( n , k ) x n = x k ( 1 − x ) ( 1 − 2 x ) ⋯ ( 1 − k x ) = x k ∏ r = 1 k ( 1 − r x ) \mathbf{G}_{0}(S(n,k))=\sum_{n \geqslant k} S(n, k) x^{n}=\frac{x^{k}}{(1-x)(1-2 x) \cdots(1-k x)}=\frac{x^k}{\prod_{r=1}^k{(1-rx)}} G0(S(n,k))=nkS(n,k)xn=(1x)(12x)(1kx)xk=r=1k(1rx)xk
证明[1]
B k ( x ) = ∑ n ⩾ k S ( n , k ) x n , B_{k}(x)=\sum_{n \geqslant k} S(n, k) x^{n}, Bk(x)=nkS(n,k)xn,
由上述递推关系,两边同乘以 x n x^n xn,并对 n n n k k k + ∞ +\infty +求和,结合生成函数定义,得:
B k ( x ) = x B k − 1 ( x ) + k x B k ( x ) , B_{k}(x)=x B_{k-1}(x)+k x B_{k}(x), Bk(x)=xBk1(x)+kxBk(x),于是我们得到:
B k ( x ) = x B k − 1 ( x ) 1 − k x = x 2 B k − 2 ( x ) ( 1 − k x ) ( 1 − ( k − 1 ) x ) = … = x k ∏ r = 1 k ( 1 − r x ) B_{k}(x)=\frac{x B_{k-1}(x)}{1-k x}=\frac{x^{2} B_{k-2}(x)}{(1-k x)(1-(k-1) x)}=\ldots=\frac{x^{k}}{\prod_{r=1}^{k}(1-r x)} Bk(x)=1kxxBk1(x)=(1kx)(1(k1)x)x2Bk2(x)==r=1k(1rx)xk

指数型生成函数

G e ( S ( n , k ) ) = ∑ n ⩾ k S ( n , k ) ⋅ x n n ! = ( e x − 1 ) k k ! \mathbf{G}_{e}(S(n,k))=\sum_{n \geqslant k} S(n, k) \cdot \frac{x^{n}}{n !}=\frac{\left(e^{x}-1\right)^{k}}{k !} Ge(S(n,k))=nkS(n,k)n!xn=k!(ex1)k
证明[2]
根据上述性质6可得:
∑ n = 0 ∞ S ( n , k ) n ! x n = ∑ n = 0 ∞ 1 k ! ∑ j = 0 k ( k j ) j n ( − 1 ) k − j x n n ! = ∑ j = 0 k ( − 1 ) k − j 1 k ! ( k j ) ∑ n = 0 ∞ j n x n n ! = ∑ j = 0 k ( − 1 ) k − j 1 k ! ( k j ) e j x = 1 k ! ∑ j = 0 k ( k j ) ( e x ) j ( − 1 ) k − j = ( e x − 1 ) k k ! \begin{aligned} \sum_{n=0}^{\infty} \frac{S(n, k)}{n !} x^{n} & = \sum_{n=0}^{\infty} \frac{1}{k !} \sum_{j=0}^{k}\binom{k}{j} j^{n}(-1)^{k-j} \frac{x^{n}}{n !}\\ & =\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k !}\binom{k}{j} \sum_{n=0}^{\infty} j^{n} \frac{x^{n}}{n !} \\ & =\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k !}\binom{k}{j} \mathrm{e}^{j x} \\ & =\frac{1}{k !} \sum_{j=0}^{k}\binom{k}{j}\left(\mathrm{e}^{x}\right)^{j}(-1)^{k-j} \\ & =\frac{\left(\mathrm{e}^{x}-1\right)^{k}}{k !} \end{aligned} n=0n!S(n,k)xn=n=0k!1j=0k(jk)jn(1)kjn!xn=j=0k(1)kjk!1(jk)n=0jnn!xn=j=0k(1)kjk!1(jk)ejx=k!1j=0k(jk)(ex)j(1)kj=k!(ex1)k

参考文献

[1] Ordinary Generating Function for The Second Kind of Stirling Number

[2] 冯荣权,宋春伟.组合数学.北京:北京大学出版社,2015.107页

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值