常用LaTeX表达式&符号——组合数学篇

前言

组合数学令人头秃,但是又不得不面对。。最近写组合数学常用到很多奇奇怪怪的符号,还有一些复杂的表达式结构,在这里总结一下,同时也方便大家使用。

常用符号

数学&字母类

符号含义Latex代码符号含义Latex代码
Z + \mathbb{Z^+} Z+正整数之集\mathbb{Z^+} p ˉ \bar{p} pˉ取反\bar{p}
⊞ \boxplus 棋盘\boxplus ⋯ \cdots 省略\cdots
O \mathcal{O} O余项\mathcal{O} ℓ \ell 字母 l l l,
用于区分
l l l 1 1 1
\ell
R ( B ; x ) \mathcal{R}(B;x) R(B;x)棋盘多项式\mathcal{R}(B;x) N ( B ; x ) \mathcal{N}(B;x) N(B;x)命中多项式\mathcal{N}(B;x)
∅ \varnothing 空集\varnothing U \mathscr{U} U集合的花体表示\mathscr{U}
⋃ \bigcup 集合的并集\bigcup ⋂ \bigcap 集合的交集\bigcap
± \pm ±加减\pm φ \varphi φ作为变量的φ\varphi
⨀ b [  ⁣ [ m ;   n ]  ⁣ ] \bigodot_b[\![m;\ n]\!] b[[m; n]] m m m元集的
手镯型
n n n重复圆排列
\bigodot_b[\![m;
\ n]\!]

关系类

符号含义Latex代码符号含义Latex代码
∀ \forall 任意\forall ∃ \exists 存在\exists
⩾ \geqslant 大于等于\geqslant ⩽ \leqslant 小于等于\leqslant
⟹ \Longrightarrow 推得\Longrightarrow    ⟺    \iff 当且仅当\iff
⊢ \vdash 单射\vdash ⊨ \models 满射\models
⊆ \subseteq 包含于
(含相等)
\subseteq ⊃ \supset 包含
(不含相等)
\supset
⊇ \supseteq 包含
(含相等)
\supseteq ∼ \sim 等价\sim
≁ \not\sim 不等价\not\sim ≃ \simeq 同态\simeq
≅ \cong 同构\cong ∼ G \stackrel{G}{\sim} G在置换群 G G G
作用下等价
\stackrel{G}{\sim}
≡ \equiv 恒等于\equiv a ≡ b ( m o d 7 ) a\equiv b\pmod 7 ab(mod7) a a a 7 7 7同余 b b ba\equiv b\pmod 7

函数类

符号含义Latex代码符号含义Latex代码
sin ⁡ ( x ) \sin(x) sin(x)正弦\sin(x) ϕ ( x ) \phi(x) ϕ(x)Euler函数\phi(x)
⌊ a b ⌋ \left \lfloor \frac{a}{b} \right \rfloor ba下取整\left\lfloor
\frac{a}{b}
\right\rfloor
⌈ a b ⌉ \left \lceil \frac{a}{b} \right \rceil ba上取整\left\lceil
\frac{a}{b}
\right\rceil
gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b)最大公约数\gcd(a,b)   m o d   ( a , b ) \bmod(a,b) mod(a,b)取模\mod(a,b)

常用表达式

符号含义Latex代码符号含义Latex代码
( n k ) \binom{n}{k} (kn)二项式系数\binom{n}{k}或者n\choose k 1 x \frac{1}{x} x1分式\frac{1}{x}
∫ − 1 1 x d x \int_{-1}^{1}{x}\mathrm{d}x 11xdx积分\int_{-1}^{1}{x}\mathrm{d}x ∑ i = 1 n i \sum\limits_{i=1}^{n}i i=1ni累加\sum\limits_{i=1}^{n}i
∏ i = 1 n i \prod\limits_{i=1}^{n}i i=1ni累乘\prod\limits_{i=1}^{n}i ⋃ i = 1 n A i \bigcup\limits_{i=1}^{n}A_i i=1nAi并集\bigcup\limits_{i=1}^{n}A_i
⋂ i = 1 n A i \bigcap\limits_{i=1}^{n}A_i i=1nAi交集\bigcap\limits_{i=1}^{n}A_i lim ⁡ n → ∞ \lim\limits_{n\to\infty} nlim取极限\lim\limits_{n\to\infty}

常用结构

  1. 多行公式对齐,我认为最常用的一个结构,里面可以是一个公式的多个部分,或者带大括号的方程组等。需要用到\begin{aligned} \end{aligned}环境(以及导入amsmath宏包,KaTex用惯了都忘了导包这茬了)。
结构Latex代码结构Latex代码
{ x 1 + 2 x 2 = 3 2 x 1 − x 2 = 1 \left\{\begin{aligned}x_1+2x_2&=3\\2x_1-x_2&=1\end{aligned}\right. {x1+2x22x1x2=3=1\left\{
\begin{aligned}
x_1+2x_2&=3\\
2x_1-x_2&=1\\
\end{aligned}
\right.
y = x 2 + 4 x + 4 = ( x + 2 ) 2 \begin{aligned}y&=x^2+4x+4\\&=(x+2)^2\end{aligned} y=x2+4x+4=(x+2)2\begin{aligned}
y&=x^2+4x+4\\
&=(x+2)^2\\
\end{aligned}
  1. 矩阵,哪都能见到。这里列出二阶三阶四阶及 n n n阶矩阵。
矩阵Latex代码
[ 1 0 0 1 ] \left[\begin{array}{cc}1 & 0 \\0 & 1\end{array}\right] [1001]\left[\begin{array}{cc}
  1 & 0 \\
  0 & 1 \\
\end{array}\right]
[ 1 0 1 0 1 1 1 1 2 ] \left[\begin{array}{ccc}1 & 0 & 1 \\0 & 1 & 1 \\1 & 1 & 2\end{array}\right] 101011112 \left[\begin{array}{ccc}
  1 & 0 & 1 \\
  0 & 1 & 1 \\
  1 & 1 & 2 \\
\end{array}\right]
[ 1 0 1 3 0 1 2 1 0 1 0 1 1 1 2 3 ] \left[\begin{array}{cccc}1 & 0 & 1 & 3\\0 & 1 & 2 & 1\\0 & 1 & 0 & 1\\1 & 1 & 2 & 3\end{array}\right] 1001011112023113 \left[\begin{array}{cccc}
  1 & 0 & 1 & 3 \\
  0 & 1 & 2 & 1 \\
  0 & 1 & 0 & 1 \\
  1 & 1 & 2 & 3 \\
\end{array}\right]
[ 1 1 0 0 ⋯ 0 1 1 1 0 ⋯ 0 0 1 1 1 ⋯ 0 ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ 0 0 0 ⋯ 1 1 ] n × n \left[\begin{array}{ccccc}1 & 1 & 0 & 0 & \cdots & 0\\ 1 & 1 & 1 & 0 & \cdots & 0\\ 0 & 1 & 1 & 1 & \cdots & 0\\\vdots & \vdots & \ddots & \ddots & \ddots& \vdots \\0 & 0 & 0 & \cdots & 1 & 1 \end{array}\right] _{n \times n} 11001110011000110001 n×n\left[\begin{array}{ccccc}
  1 & 1 & 0 & 0 & \cdots & 0 \\
  1 & 1 & 1 & 0 & \cdots & 0 \\
  0 & 1 & 1 & 1 & \cdots & 0 \\
  \vdots & \vdots & \ddots & \ddots & \ddots& \vdots \\
  0 & 0 & 0 & \cdots & 1 & 1 \\
\end{array}\right]_{n \times n}

后记

本文总结了一些在组合数学中会用到的Latex符号及其表示,希望能帮到大家。后面在学习中会继续补充。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值