前言
组合数学令人头秃,但是又不得不面对。。最近写组合数学常用到很多奇奇怪怪的符号,还有一些复杂的表达式结构,在这里总结一下,同时也方便大家使用。
常用符号
数学&字母类
符号 | 含义 | Latex代码 | 符号 | 含义 | Latex代码 |
---|---|---|---|---|---|
Z + \mathbb{Z^+} Z+ | 正整数之集 | \mathbb{Z^+} | p ˉ \bar{p} pˉ | 取反 | \bar{p} |
⊞ \boxplus ⊞ | 棋盘 | \boxplus | ⋯ \cdots ⋯ | 省略 | \cdots |
O \mathcal{O} O | 余项 | \mathcal{O} | ℓ \ell ℓ | 字母
l
l
l, 用于区分 l l l和 1 1 1 | \ell |
R ( B ; x ) \mathcal{R}(B;x) R(B;x) | 棋盘多项式 | \mathcal{R}(B;x) | N ( B ; x ) \mathcal{N}(B;x) N(B;x) | 命中多项式 | \mathcal{N}(B;x) |
∅ \varnothing ∅ | 空集 | \varnothing | U \mathscr{U} U | 集合的花体表示 | \mathscr{U} |
⋃ \bigcup ⋃ | 集合的并集 | \bigcup | ⋂ \bigcap ⋂ | 集合的交集 | \bigcap |
± \pm ± | 加减 | \pm | φ \varphi φ | 作为变量的φ | \varphi |
⨀ b [ [ m ; n ] ] \bigodot_b[\![m;\ n]\!] ⨀b[[m; n]] |
m
m
m元集的 手镯型 n n n重复圆排列 | \bigodot_b[\![m; \ n]\!] |
关系类
符号 | 含义 | Latex代码 | 符号 | 含义 | Latex代码 |
---|---|---|---|---|---|
∀ \forall ∀ | 任意 | \forall | ∃ \exists ∃ | 存在 | \exists |
⩾ \geqslant ⩾ | 大于等于 | \geqslant | ⩽ \leqslant ⩽ | 小于等于 | \leqslant |
⟹ \Longrightarrow ⟹ | 推得 | \Longrightarrow | ⟺ \iff ⟺ | 当且仅当 | \iff |
⊢ \vdash ⊢ | 单射 | \vdash | ⊨ \models ⊨ | 满射 | \models |
⊆ \subseteq ⊆ | 包含于 (含相等) | \subseteq | ⊃ \supset ⊃ | 包含 (不含相等) | \supset |
⊇ \supseteq ⊇ | 包含 (含相等) | \supseteq | ∼ \sim ∼ | 等价 | \sim |
≁ \not\sim ∼ | 不等价 | \not\sim | ≃ \simeq ≃ | 同态 | \simeq |
≅ \cong ≅ | 同构 | \cong | ∼ G \stackrel{G}{\sim} ∼G | 在置换群
G
G
G 作用下等价 | \stackrel{G}{\sim} |
≡ \equiv ≡ | 恒等于 | \equiv | a ≡ b ( m o d 7 ) a\equiv b\pmod 7 a≡b(mod7) | a a a模 7 7 7同余 b b b | a\equiv b\pmod 7 |
函数类
符号 | 含义 | Latex代码 | 符号 | 含义 | Latex代码 |
---|---|---|---|---|---|
sin ( x ) \sin(x) sin(x) | 正弦 | \sin(x) | ϕ ( x ) \phi(x) ϕ(x) | Euler函数 | \phi(x) |
⌊ a b ⌋ \left \lfloor \frac{a}{b} \right \rfloor ⌊ba⌋ | 下取整 | \left\lfloor \frac{a}{b} \right\rfloor | ⌈ a b ⌉ \left \lceil \frac{a}{b} \right \rceil ⌈ba⌉ | 上取整 | \left\lceil \frac{a}{b} \right\rceil |
gcd ( a , b ) \gcd(a,b) gcd(a,b) | 最大公约数 | \gcd(a,b) | m o d ( a , b ) \bmod(a,b) mod(a,b) | 取模 | \mod(a,b) |
常用表达式
符号 | 含义 | Latex代码 | 符号 | 含义 | Latex代码 |
---|---|---|---|---|---|
( n k ) \binom{n}{k} (kn) | 二项式系数 | \binom{n}{k} 或者n\choose k | 1 x \frac{1}{x} x1 | 分式 | \frac{1}{x} |
∫ − 1 1 x d x \int_{-1}^{1}{x}\mathrm{d}x ∫−11xdx | 积分 | \int_{-1}^{1}{x}\mathrm{d}x | ∑ i = 1 n i \sum\limits_{i=1}^{n}i i=1∑ni | 累加 | \sum\limits_{i=1}^{n}i |
∏ i = 1 n i \prod\limits_{i=1}^{n}i i=1∏ni | 累乘 | \prod\limits_{i=1}^{n}i | ⋃ i = 1 n A i \bigcup\limits_{i=1}^{n}A_i i=1⋃nAi | 并集 | \bigcup\limits_{i=1}^{n}A_i |
⋂ i = 1 n A i \bigcap\limits_{i=1}^{n}A_i i=1⋂nAi | 交集 | \bigcap\limits_{i=1}^{n}A_i | lim n → ∞ \lim\limits_{n\to\infty} n→∞lim | 取极限 | \lim\limits_{n\to\infty} |
常用结构
- 多行公式对齐,我认为最常用的一个结构,里面可以是一个公式的多个部分,或者带大括号的方程组等。需要用到
\begin{aligned} \end{aligned}
环境(以及导入amsmath
宏包,KaTex用惯了都忘了导包这茬了)。
结构 | Latex代码 | 结构 | Latex代码 |
---|---|---|---|
{ x 1 + 2 x 2 = 3 2 x 1 − x 2 = 1 \left\{\begin{aligned}x_1+2x_2&=3\\2x_1-x_2&=1\end{aligned}\right. {x1+2x22x1−x2=3=1 | \left\{ \begin{aligned} x_1+2x_2&=3\\ 2x_1-x_2&=1\\ \end{aligned} \right. | y = x 2 + 4 x + 4 = ( x + 2 ) 2 \begin{aligned}y&=x^2+4x+4\\&=(x+2)^2\end{aligned} y=x2+4x+4=(x+2)2 | \begin{aligned} y&=x^2+4x+4\\ &=(x+2)^2\\ \end{aligned} |
- 矩阵,哪都能见到。这里列出二阶三阶四阶及 n n n阶矩阵。
矩阵 | Latex代码 |
---|---|
[ 1 0 0 1 ] \left[\begin{array}{cc}1 & 0 \\0 & 1\end{array}\right] [1001] | \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array}\right] |
[ 1 0 1 0 1 1 1 1 2 ] \left[\begin{array}{ccc}1 & 0 & 1 \\0 & 1 & 1 \\1 & 1 & 2\end{array}\right] 101011112 | \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \\ \end{array}\right] |
[ 1 0 1 3 0 1 2 1 0 1 0 1 1 1 2 3 ] \left[\begin{array}{cccc}1 & 0 & 1 & 3\\0 & 1 & 2 & 1\\0 & 1 & 0 & 1\\1 & 1 & 2 & 3\end{array}\right] 1001011112023113 | \left[\begin{array}{cccc} 1 & 0 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 2 & 3 \\ \end{array}\right] |
[ 1 1 0 0 ⋯ 0 1 1 1 0 ⋯ 0 0 1 1 1 ⋯ 0 ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ 0 0 0 ⋯ 1 1 ] n × n \left[\begin{array}{ccccc}1 & 1 & 0 & 0 & \cdots & 0\\ 1 & 1 & 1 & 0 & \cdots & 0\\ 0 & 1 & 1 & 1 & \cdots & 0\\\vdots & \vdots & \ddots & \ddots & \ddots& \vdots \\0 & 0 & 0 & \cdots & 1 & 1 \end{array}\right] _{n \times n} 110⋮0111⋮0011⋱0001⋱⋯⋯⋯⋯⋱1000⋮1 n×n | \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots& \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ \end{array}\right]_{n \times n} |
后记
本文总结了一些在组合数学中会用到的Latex符号及其表示,希望能帮到大家。后面在学习中会继续补充。