文章目录
写在前面
总结常见的各种曲线曲面积分以及重积分,参考华东师大版《数学分析(下册)》(第四版)。
曲线积分
研究定义在平面或空间曲线段上的函数的积分。
第一型曲线积分
引入
利用密度函数的积分求质量,即在计算质量分布在平面(二维)或空间曲线段(三维) L L L上的物体的质量时,使用第一型曲线积分。第一型曲线积分与曲线的方向无关。
定义
设
L
L
L为平面上可求长度的曲线段,
f
(
x
,
y
)
f(x,\,y)
f(x,y)是定义在
L
L
L上的函数。对曲线
L
L
L作分割
T
T
T,它把
L
L
L分割成
n
n
n个可求长度的小曲线段
L
i
(
i
=
1
,
2
,
⋯
,
n
)
L_i\,(i=1,\,2,\,\cdots,\,n)
Li(i=1,2,⋯,n),
L
i
L_i
Li的弧长记为
Δ
s
i
\Delta s_i
Δsi,分割
T
T
T的细度为
∥
T
∥
=
max
1
⩽
i
⩽
n
Δ
s
i
\|T\|=\max\limits_{1\leqslant i\leqslant n}\Delta s_i
∥T∥=1⩽i⩽nmaxΔsi,在
L
i
L_i
Li上任取一点
(
ξ
i
,
η
i
)
,
i
=
1
,
2
,
⋯
,
n
(\xi_i,\,\eta_i),\,i=1,\,2,\,\cdots,\,n
(ξi,ηi),i=1,2,⋯,n. 若有极限
lim
∥
T
∥
→
0
∑
i
=
1
n
f
(
ξ
i
,
η
i
)
Δ
s
i
=
J
,
\lim_{\|T\|\to0}\sum_{i=1}^nf(\xi_i,\,\eta_i)\,\Delta s_i=J,
∥T∥→0limi=1∑nf(ξi,ηi)Δsi=J,
且
J
J
J的值与分割
T
T
T、点
(
ξ
i
,
η
i
)
(\xi_i,\,\eta_i)
(ξi,ηi)的取法无关,则称此极限为
f
(
x
,
y
)
f(x,\,y)
f(x,y)在
L
L
L上的第一型曲线积分,记作
∫
L
f
(
x
,
y
)
d
s
.
\int_Lf(x,\,y)\,\mathrm{d}s.
∫Lf(x,y)ds.
性质
-
线性性;
-
区间可加性;
-
积分不等式;
-
绝对值不等式;
-
若 ∫ L f ( x , y ) d s \int_Lf(x,\,y)\,\mathrm{d}s ∫Lf(x,y)ds存在, L L L的弧长为 s s s,则存在常数 c c c,使得
∫ L f ( x , y ) d s = c s , \int_Lf(x,\,y)\,\mathrm{d}s=cs, ∫Lf(x,y)ds=cs,
这里 inf L f ( x , y ) ⩽ c ⩽ sup L f ( x , y ) \inf\limits_Lf(x,\,y)\leqslant c\leqslant\sup\limits_Lf(x,\,y) Linff(x,y)⩽c⩽Lsupf(x,y). -
几何意义:以定义在平面 O x y Oxy Oxy上的分段光滑曲线 L L L为准线,母线平行于 z z z轴的柱面截取 0 ⩽ z ⩽ f ( x , y ) 0\leqslant z\leqslant f(x,\,y) 0⩽z⩽f(x,y)部分的面积。
计算方法
定理:
设有光滑曲线
L
:
{
x
=
φ
(
t
)
,
y
=
ψ
(
t
)
,
t
∈
[
α
,
β
]
,
L: \begin{cases} x=\varphi(t),\\ y=\psi(t), \end{cases} \quad t\in [\alpha,\,\beta],
L:{x=φ(t),y=ψ(t),t∈[α,β],
函数
f
(
x
,
y
)
f(x,\,y)
f(x,y)为定义在
L
L
L上的连续函数,则有
∫
L
f
(
x
,
y
)
d
s
=
∫
α
β
f
(
φ
(
t
)
,
ψ
(
t
)
)
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
d
t
.
\int_Lf(x,\,y)\,\mathrm{d}s=\int_\alpha^\beta f(\varphi(t),\,\psi(t))\sqrt{\varphi'^2(t)+\psi'^2(t)\,}\,\mathrm{d}t.
∫Lf(x,y)ds=∫αβf(φ(t),ψ(t))φ′2(t)+ψ′2(t)dt.
证明思路:由弧长公式和积分中值定理得到。
另一种常用的格式:
当曲线
L
L
L由方程
y
=
ψ
(
x
)
,
x
∈
[
a
,
b
]
y=\psi(x),\,\,x\in[a,\,b]
y=ψ(x),x∈[a,b]表示,且
ψ
(
x
)
\psi(x)
ψ(x)在
[
a
,
b
]
[a,\,b]
[a,b]上有连续导函数时,有
∫
L
f
(
x
,
y
)
d
s
=
∫
α
β
f
(
x
,
ψ
(
x
)
)
1
+
ψ
′
2
(
t
)
d
x
.
\int_Lf(x,\,y)\,\mathrm{d}s=\int_\alpha^\beta f(x,\,\psi(x))\sqrt{1+\psi'^2(t)\,}\,\mathrm{d}x.
∫Lf(x,y)ds=∫αβf(x,ψ(x))1+ψ′2(t)dx.
第二型曲线积分
引入
物理学中的变力做功问题。第二型曲线积分与曲线的方向有关。
定义
设函数
P
(
x
,
y
)
,
Q
(
x
,
y
)
P(x,\,y),\ Q(x,\,y)
P(x,y), Q(x,y)定义在平面有向可求长度曲线
L
:
A
B
⌢
L:\stackrel{\LARGE{\frown}}{AB}
L:AB⌢上。对
L
L
L的任一分割
T
T
T, 它把
L
L
L分成
n
n
n个小弧段
M
i
−
1
M
i
^
(
i
=
1
,
2
,
⋯
,
n
)
\widehat{M_{i-1}M_i}\quad (i=1,\,2,\,\cdots,\,n)
Mi−1Mi
(i=1,2,⋯,n)
其中
M
0
=
A
,
M
n
=
B
M_0=A,\,M_n=B
M0=A,Mn=B, 记各小弧段
M
i
−
1
M
i
^
\widehat{M_{i-1}M_i}
Mi−1Mi
的弧长为
Δ
s
i
\Delta s_i
Δsi,分割
T
T
T的细度
∥
T
∥
=
max
1
⩽
i
⩽
n
Δ
s
i
\|T\|=\max\limits_{1\leqslant i\leqslant n}\Delta s_i
∥T∥=1⩽i⩽nmaxΔsi. 又设
T
T
T的分点
M
i
M_i
Mi的坐标为
(
x
i
,
y
i
)
(x_i,\,y_i)
(xi,yi),记
Δ
x
i
=
x
i
−
x
i
−
1
,
Δ
y
i
=
y
i
−
y
i
−
1
(
i
=
1
,
2
,
⋯
,
n
)
\Delta x_i=x_i-x_{i-1},\,\Delta y_i=y_i-y_{i-1}\,(i=1,\,2,\,\cdots,\,n)
Δxi=xi−xi−1,Δyi=yi−yi−1(i=1,2,⋯,n)。在每个小弧段
M
i
−
1
M
i
^
\widehat{M_{i-1}M_i}
Mi−1Mi
上任取一点
(
ξ
i
,
η
i
)
(\xi_i,\,\eta_i)
(ξi,ηi),若极限
lim
∥
T
∥
→
0
∑
i
=
1
n
P
(
ξ
i
,
η
i
)
Δ
x
i
+
lim
∥
T
∥
→
0
∑
i
=
1
n
Q
(
ξ
i
,
η
i
)
Δ
y
i
\lim_{\|T\|\to0}\sum_{i=1}^nP(\xi_i,\,\eta_i)\,\Delta x_i+\lim_{\|T\|\to0}\sum_{i=1}^nQ(\xi_i,\,\eta_i)\,\Delta y_i
∥T∥→0limi=1∑nP(ξi,ηi)Δxi+∥T∥→0limi=1∑nQ(ξi,ηi)Δyi
存在且与分割
T
T
T与点
(
ξ
i
,
η
i
)
(\xi_i,\,\eta_i)
(ξi,ηi)的取法无关,则称此极限为函数
P
(
x
,
y
)
,
Q
(
x
,
y
)
P(x,\,y),\,Q(x,\,y)
P(x,y),Q(x,y)沿有向曲线
L
L
L上的第二型曲线积分,记为
∫
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
或
∫
A
B
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
.
\int_LP(x,\,y)\,\mathrm{d}x+Q(x,\,y)\,\mathrm{d}y\quad\text{或}\quad\int_{AB}P(x,\,y)\,\mathrm{d}x+Q(x,\,y)\,\mathrm{d}y.
∫LP(x,y)dx+Q(x,y)dy或∫ABP(x,y)dx+Q(x,y)dy.
若
L
L
L为封闭的有向曲线,则记为
∮
L
P
d
x
+
Q
d
y
.
\oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y.
∮LPdx+Qdy.
性质
- 线性性;
- 有向线段首尾相接,积分值不变(向量加法);
- 方向改变,符号相反,即: ∫ A B P d x + Q d y = − ∫ B A P d x + Q d y \int_{AB}P\,\mathrm{d}x+Q\,\mathrm{d}y=-\int_{BA}P\,\mathrm{d}x+Q\,\mathrm{d}y ∫ABPdx+Qdy=−∫BAPdx+Qdy.
计算
设平面曲线
L
:
{
x
=
φ
(
t
)
,
y
=
ψ
(
t
)
,
t
∈
[
α
,
β
]
,
L:\begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\quad t\in [\alpha,\,\beta],
L:{x=φ(t),y=ψ(t),t∈[α,β],
其中
φ
(
t
)
,
ψ
(
t
)
\varphi(t),\,\psi(t)
φ(t),ψ(t)在
[
α
,
β
]
[\alpha,\,\beta]
[α,β]上具有一阶连续导函数,且
A
=
(
φ
(
α
)
,
ψ
(
α
)
)
,
B
=
(
φ
(
β
)
,
ψ
(
β
)
)
A=\big(\varphi(\alpha),\,\psi(\alpha)\big),\,B=\big(\varphi(\beta),\,\psi(\beta)\big)
A=(φ(α),ψ(α)),B=(φ(β),ψ(β)),又设
P
(
x
,
y
)
P(x,\,y)
P(x,y)与
Q
(
x
,
y
)
Q(x,\,y)
Q(x,y)为
L
L
L上的连续函数,则沿
L
L
L从
A
A
A到
B
B
B的第二型曲线积分
∫
A
B
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
α
β
[
P
(
φ
(
t
)
,
ψ
(
t
)
)
φ
′
(
t
)
+
Q
(
φ
(
t
)
,
ψ
(
t
)
)
ψ
′
(
t
)
]
d
t
.
\begin{aligned} &\int_{AB}P(x,\,y)\,\mathrm{d}x+Q(x,\,y)\,\mathrm{d}y\\ =&\int_\alpha^\beta \Big[P(\varphi(t),\,\psi(t))\,\varphi'(t)+Q(\varphi(t),\,\psi(t))\,\psi'(t)\Big]\,\mathrm{d}t. \end{aligned}
=∫ABP(x,y)dx+Q(x,y)dy∫αβ[P(φ(t),ψ(t))φ′(t)+Q(φ(t),ψ(t))ψ′(t)]dt.
二重积分
引入
计算曲顶柱体的体积。
定义
与定积分类似。
性质
-
线性性;
-
积分不等式;
-
积分的绝对值不等式;
-
若函数 f ( x , y ) f(x,\,y) f(x,y)在 D 1 , D 2 D_1,\,D_2 D1,D2上都可积,且 D 1 , D 2 D_1,\,D_2 D1,D2没有公共内点,则 f ( x , y ) f(x,\,y) f(x,y)在 D 1 ⋃ D 2 D_1\bigcup D_2 D1⋃D2上也可积,且
∬ D 1 ⋃ D 2 f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ . \iint\limits_{D_1\bigcup D_2}f(x,\,y)\,\mathrm{d}\sigma=\iint\limits_{D_1}f(x,\,y)\,\mathrm{d}\sigma+\iint\limits_{D_2}f(x,\,y)\,\mathrm{d}\sigma. D1⋃D2∬f(x,y)dσ=D1∬f(x,y)dσ+D2∬f(x,y)dσ. -
若 f ( x , y ) f(x,\,y) f(x,y)在 D D D上可积,且
m ⩽ f ( x , y ) ⩽ M , ( x , y ) ∈ D , m\leqslant f(x,\,y)\leqslant M,\quad(x,\,y)\in D, m⩽f(x,y)⩽M,(x,y)∈D,
则
m S D ⩽ ∬ D f ( x , y ) d σ ⩽ M S D , mS_D\leqslant\iint\limits_{D}f(x,\,y)\,\mathrm{d}\sigma\leqslant MS_D, mSD⩽D∬f(x,y)dσ⩽MSD,
这里 S D S_D SD为积分区域 D D D的面积; -
(中值定理)若 f ( x , y ) f(x,\,y) f(x,y)在有界闭域 D D D上连续,则存在 ( ξ , η ) ∈ D (\xi,\,\eta)\in D (ξ,η)∈D,使得
∬ D f ( x , y ) d σ = f ( ξ , η ) S D . \iint\limits_{D}f(x,\,y)\,\mathrm{d}\sigma=f(\xi,\,\eta)S_D. D∬f(x,y)dσ=f(ξ,η)SD.
其几何意义是:以 D D D为底, x = f ( x , y ) ( f ( x , y ) ⩾ 0 ) x=f(x,\,y)\ \big(f(x,\,y)\geqslant0\big) x=f(x,y) (f(x,y)⩾0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,此平顶柱体的高等于 f ( x , y ) f(x,\,y) f(x,y)在区域 D D D中某点 ( ξ , η ) (\xi,\,\eta) (ξ,η)的函数值 f ( ξ , η ) f(\xi,\,\eta) f(ξ,η).
Green公式
若函数
P
(
x
,
y
)
,
Q
(
x
,
y
)
P(x,\,y),\,Q(x,\,y)
P(x,y),Q(x,y)在闭区域
D
D
D上连续,且有连续的一阶偏导数,则有
∬
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
σ
=
∮
L
P
d
x
+
Q
d
y
,
\iint\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,\mathrm{d}\sigma=\oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y,
∬(∂x∂Q−∂y∂P)dσ=∮LPdx+Qdy,
这里 L L L为区域 D D D的边界曲线,并取正方向。
Green公式联系了第二型曲线积分与二重积分。
曲线积分与路线的无关性
设 D D D为单连通区域,若函数 P ( x , y ) , Q ( x , y ) P(x,\,y),\,Q(x,\,y) P(x,y),Q(x,y)在 D D D内连续,且具有一阶连续偏导数,则下列的四个条件等价:
-
沿 D D D内任一按段光滑封闭曲线 L L L有:
∮ L P d x + Q d y = 0 ; \oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y=0; ∮LPdx+Qdy=0; -
对 D D D中任一按段光滑曲线 L L L,曲线积分 ∫ L P d x + Q d y \int_LP\mathrm{d}x+Q\mathrm{d}y ∫LPdx+Qdy与路线无关,只与 L L L起始点的选取有关;
-
P d x + Q d y P\mathrm{d}x+Q\mathrm{d}y Pdx+Qdy是 D D D内某一函数 u ( x , y ) u(x,\,y) u(x,y)的全微分,即在 D D D内有 d u = P d x + Q d y \mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y du=Pdx+Qdy;
-
在 D D D内处处成立
∂ P ∂ y = ∂ Q ∂ x . \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}. ∂y∂P=∂x∂Q.
变量替换
直角坐标变换
用于一般的变量替换。
设
f
(
x
,
y
)
f(x,\,y)
f(x,y)在有界闭域
D
D
D上可积,变换
T
:
x
=
x
(
u
,
v
)
,
y
=
y
(
u
,
v
)
T:x=x(u,\,v),\,y=y(u,\,v)
T:x=x(u,v),y=y(u,v)将平面由按段光滑封闭曲线所围成的闭区域
Δ
\Delta
Δ一对一地映成
x
y
xy
xy平面上的闭区域
D
D
D,函数
x
(
u
,
v
)
,
y
(
u
,
v
)
x(u,\,v),\,y(u,\,v)
x(u,v),y(u,v)在
Δ
\Delta
Δ内分别具有一阶连续偏导数,且它们的函数行列式
J
(
u
,
v
)
=
∂
(
x
,
y
)
∂
(
u
,
v
)
=
∣
∂
x
∂
u
∂
x
∂
v
∂
y
∂
u
∂
y
∂
v
∣
≠
0
,
(
u
,
v
)
∈
Δ
,
J(u,\,v)=\frac{\partial (x,\,y)}{\partial (u,\,v)}= \begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{vmatrix} \neq0,\quad(u,\,v)\in \Delta,
J(u,v)=∂(u,v)∂(x,y)=
∂u∂x∂u∂y∂v∂x∂v∂y
=0,(u,v)∈Δ,
则
∬
D
f
(
x
,
y
)
d
x
d
y
=
∬
D
f
(
x
(
u
,
v
)
,
y
(
u
,
v
)
)
∣
J
(
u
,
v
)
∣
d
u
d
v
.
\iint\limits_{D}f(x,\,y)\,\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f\big(x(u,\,v),\,y(u,\,v)\big)\big|J(u,\,v)\big|\,\mathrm{d}u\mathrm{d}v.
D∬f(x,y)dxdy=D∬f(x(u,v),y(u,v))
J(u,v)
dudv.
极坐标变换
常用于 x 2 + y 2 x^2+y^2 x2+y2类型出现在被积函数中的情况,利用极坐标变换可以更有效地化简积分。
设
f
(
x
,
y
)
f(x,\,y)
f(x,y)在有界闭域
D
D
D上可积,且在极坐标变换
T
:
{
x
=
r
cos
θ
,
y
=
r
sin
θ
,
0
⩽
r
<
+
∞
,
0
⩽
θ
⩽
2
π
T: \begin{cases} x=r\cos\theta,\\ y=r\sin\theta, \end{cases} \quad 0\leqslant r<+\infty,\,0\leqslant\theta\leqslant2\pi
T:{x=rcosθ,y=rsinθ,0⩽r<+∞,0⩽θ⩽2π
作用下,
x
y
xy
xy平面上有界区域
D
D
D与
r
θ
r\theta
rθ平面上区域
Δ
\Delta
Δ对应,则成立
∬
D
f
(
x
,
y
)
d
x
d
y
=
∬
D
f
(
r
cos
θ
,
r
sin
θ
)
r
d
r
d
θ
.
\iint\limits_{D}f(x,\,y)\,\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f(r\cos\theta,\,r\sin\theta)r\,\mathrm{d}r\mathrm{d}\theta.
D∬f(x,y)dxdy=D∬f(rcosθ,rsinθ)rdrdθ.
广义极坐标变换
T : { x = a r cos θ , y = b r sin θ , 0 ⩽ r < + ∞ , 0 ⩽ θ ⩽ 2 π T: \begin{cases} x=ar\cos\theta,\\ y=br\sin\theta, \end{cases} \quad 0\leqslant r<+\infty,\,0\leqslant\theta\leqslant2\pi T:{x=arcosθ,y=brsinθ,0⩽r<+∞,0⩽θ⩽2π
则有 J ( r , θ ) = a b r J(r,\,\theta)=abr J(r,θ)=abr.
三重积分
引入
对密度函数进行积分,求一个空间立体的质量,就可导出三重积分。
化成累次积分
“先切条,后扎捆”:先对高积分,后对截面积分
若函数
f
(
x
,
y
,
z
)
f(x,\,y,\,z)
f(x,y,z)在长方体
V
=
[
a
,
b
]
×
[
c
,
d
]
×
[
e
,
h
]
V=[a,\,b]\times[c,\,d]\times[e,\,h]
V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意
(
x
,
y
)
∈
[
a
,
b
]
×
[
c
,
d
]
(x,\,y)\in[a,\,b]\times[c,\,d]
(x,y)∈[a,b]×[c,d],
g
(
x
,
y
)
=
∫
a
b
f
(
x
,
y
,
z
)
d
z
g(x,\,y)=\int_a^bf(x,\,y,\,z)\,\mathrm{d}z
g(x,y)=∫abf(x,y,z)dz存在,则积分
∬
D
g
(
x
,
y
)
d
x
d
y
\iint\limits_Dg(x,\,y)\,\mathrm{d}x\mathrm{d}y
D∬g(x,y)dxdy也存在,且
∭
V
f
(
x
,
y
,
z
)
d
x
d
y
d
z
=
∬
D
d
x
d
y
∫
e
h
f
(
x
,
y
,
z
)
d
z
.
\iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_D\,\mathrm{d}x\mathrm{d}y\int_e^hf(x,\,y,\,z)\,\mathrm{d}z.
V∭f(x,y,z)dxdydz=D∬dxdy∫ehf(x,y,z)dz.
推论:
对于上下限可变的情形,可类似得到
∭
V
f
(
x
,
y
,
z
)
d
x
d
y
d
z
=
∬
D
d
x
d
y
∫
z
1
(
x
,
y
)
z
2
(
x
,
y
)
f
(
x
,
y
,
z
)
d
z
,
\iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_D\,\mathrm{d}x\mathrm{d}y\int_{z_1(x,\,y)}^{z_2(x,\,y)}f(x,\,y,\,z)\,\mathrm{d}z,
V∭f(x,y,z)dxdydz=D∬dxdy∫z1(x,y)z2(x,y)f(x,y,z)dz,
此时
D
D
D为
V
V
V在
O
x
y
Oxy
Oxy平面上的投影。
“先切面,后叠加”:先对截面积分,后对高积分
若函数
f
(
x
,
y
,
z
)
f(x,\,y,\,z)
f(x,y,z)在长方体
V
=
[
a
,
b
]
×
[
c
,
d
]
×
[
e
,
h
]
V=[a,\,b]\times[c,\,d]\times[e,\,h]
V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意
x
∈
[
a
,
b
]
x\in[a,\,b]
x∈[a,b],二重积分
I
(
x
)
=
∬
D
f
(
x
,
y
,
z
)
d
y
d
z
I(x)=\iint\limits_Df(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z
I(x)=D∬f(x,y,z)dydz存在,其中
D
=
[
c
,
d
]
×
[
e
,
h
]
D=[c,\,d]\times[e,\,h]
D=[c,d]×[e,h],则积分
∫
a
b
d
x
∬
D
f
(
x
,
y
,
z
)
d
y
d
z
\int_a^b\,\mathrm{d}x\iint\limits_Df(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z
∫abdxD∬f(x,y,z)dydz也存在,且
∭
V
f
(
x
,
y
,
z
)
d
x
d
y
d
z
=
∫
a
b
d
x
∬
D
f
(
x
,
y
,
z
)
d
y
d
z
.
\iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_a^b\,\mathrm{d}x\iint\limits_Df(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z.
V∭f(x,y,z)dxdydz=∫abdxD∬f(x,y,z)dydz.
推论(常用):
若函数
f
(
x
,
y
,
z
)
f(x,\,y,\,z)
f(x,y,z)在长方体
V
⊂
[
a
,
b
]
×
[
c
,
d
]
×
[
e
,
h
]
V\subset[a,\,b]\times[c,\,d]\times[e,\,h]
V⊂[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意固定的
z
∈
[
e
,
h
]
z\in[e,\,h]
z∈[e,h],积分
φ
(
z
)
=
∬
D
z
f
(
x
,
y
,
z
)
d
y
d
z
\varphi(z)=\iint\limits_{D_z}f(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z
φ(z)=Dz∬f(x,y,z)dydz存在,其中
D
z
D_z
Dz为截面
{
(
x
,
y
)
∣
(
x
,
y
,
z
)
∈
V
}
\big\{(x,\,y)\,\big|\,(x,\,y,\,z)\in V\big\}
{(x,y)
(x,y,z)∈V},则积分
∫
e
h
φ
(
z
)
d
z
\int_e^h\varphi(z)\,\mathrm{d}z
∫ehφ(z)dz存在,且
∭
V
f
(
x
,
y
,
z
)
d
x
d
y
d
z
=
∫
e
h
φ
(
z
)
d
z
=
∫
e
h
d
z
∬
D
z
f
(
x
,
y
,
z
)
d
x
d
y
.
\iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_e^h\varphi(z)\,\mathrm{d}z=\int_e^h\,\mathrm{d}z\iint\limits_{D_z}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y.
V∭f(x,y,z)dxdydz=∫ehφ(z)dz=∫ehdzDz∬f(x,y,z)dxdy.
变量替换
一般情况
∭ V f ( x , y , z ) d x d y d z = ∭ V ′ f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) ∣ J ( u , v , w ) ∣ d u d v d w . \begin{aligned} &\iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &=\iiint\limits_{V'}f\big(x(u,\,v,\,w),\,y(u,\,v,\,w),\,z(u,\,v,\,w)\big)\big|J(u,\,v,\,w)\big|\,\mathrm{d}u\mathrm{d}v\mathrm{d}w.\end{aligned} V∭f(x,y,z)dxdydz=V′∭f(x(u,v,w),y(u,v,w),z(u,v,w)) J(u,v,w) dudvdw.
柱面坐标变换
∭ V f ( x , y , z ) d x d y d z = ∭ V ′ f ( r cos θ , r sin θ , z ) r d r d θ d z . \iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint\limits_{V'}f(r\cos\theta,\,r\sin\theta,\,z)r\,\mathrm{d}r\mathrm{d}\theta\mathrm{d}z. V∭f(x,y,z)dxdydz=V′∭f(rcosθ,rsinθ,z)rdrdθdz.
球坐标变换
∭ V f ( x , y , z ) d x d y d z = ∭ V ′ f ( r sin φ cos θ , r sin φ sin θ , r cos φ ) r 2 sin φ d r d φ d θ . \begin{aligned} &\iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &=\iiint\limits_{V'}f(r\sin\varphi\cos\theta,\,r\sin\varphi\sin\theta,\,r\cos\varphi)r^2\sin\varphi\,\mathrm{d}r\mathrm{d}\varphi\mathrm{d}\theta.\end{aligned} V∭f(x,y,z)dxdydz=V′∭f(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdrdφdθ.
广义球坐标变换
∭ V f ( x , y , z ) d x d y d z = ∭ V ′ f ( a r sin φ cos θ , b r sin φ sin θ , c r cos φ ) a b c r 2 sin φ d r d φ d θ . \begin{aligned} &\iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &=\iiint\limits_{V'}f(ar\sin\varphi\cos\theta,\,br\sin\varphi\sin\theta,\,cr\cos\varphi)abcr^2\sin\varphi\,\mathrm{d}r\mathrm{d}\varphi\mathrm{d}\theta.\end{aligned} V∭f(x,y,z)dxdydz=V′∭f(arsinφcosθ,brsinφsinθ,crcosφ)abcr2sinφdrdφdθ.
曲面积分
第一型曲面积分
引入
可类比第一型曲线积分,不过此时质量分布在某一曲面块上而非曲线上。
计算
设有光滑曲面
S
:
z
=
z
(
x
,
y
)
,
(
x
,
y
)
∈
D
,
S:z=z(x,\,y),\ \ (x,\,y)\in D,
S:z=z(x,y), (x,y)∈D,
f
(
x
,
y
,
z
)
f(x,\,y,\,z)
f(x,y,z)为
S
S
S上的连续函数,则
∬
S
f
(
x
,
y
,
z
)
d
S
=
∬
D
f
(
x
,
y
,
z
(
x
,
y
)
)
1
+
z
x
2
+
z
y
2
d
x
d
y
.
\iint\limits_Sf(x,\,y,\,z)\,\mathrm{d}S=\iint\limits_Df\big(x,\,y,\,z(x,\,y)\big)\sqrt{1+z_x^2+z_y^2\,}\,\mathrm{d}x\mathrm{d}y.
S∬f(x,y,z)dS=D∬f(x,y,z(x,y))1+zx2+zy2dxdy.
第二型曲面积分
曲面的侧
通常由 z = z ( x , y ) z=z(x,\,y) z=z(x,y)所表示的曲面都是双侧曲面,当以其法线正方向与 z z z轴正向的夹脚成锐角的一侧(上侧)为正侧时,则另一侧(下侧)为负侧。当 S S S为封闭曲面时,常规定曲面外侧为正侧,内侧为负侧。
引入
计算流体以以一定的流速从曲面负侧向正侧流动时产生的流量。
性质
- 线性性;
- 积分曲面的加性。
计算
设
R
R
R是定义在光滑曲面
S
:
z
=
z
(
x
,
y
)
,
(
x
,
y
∈
D
x
y
)
S:z=z(x,\,y),\ \ (x,\,y\in D_{xy})
S:z=z(x,y), (x,y∈Dxy)上的连续函数,以
S
S
S的上侧为正侧(这时
S
S
S的法线方向与
z
z
z轴正向成锐角),则有
∬
S
R
(
x
,
y
,
z
)
d
S
=
∬
D
x
y
R
(
x
,
y
,
z
(
x
,
y
)
)
d
x
d
y
.
\iint\limits_SR(x,\,y,\,z)\,\mathrm{d}S=\iint\limits_{D_{xy}}R\big(x,\,y,\,z(x,\,y)\big)\,\mathrm{d}x\mathrm{d}y.
S∬R(x,y,z)dS=Dxy∬R(x,y,z(x,y))dxdy.
Gauss公式
建立沿空间闭曲面的曲面积分和三重积分之间的联系。
定理
设空间区域
V
V
V由分片光滑的双侧封闭曲面
S
S
S围成。若函数
P
,
Q
,
R
P,\,Q,\,R
P,Q,R在
V
V
V上连续,且有一阶连续偏导数,则
∭
V
(
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
)
d
x
d
y
d
z
=
∯
S
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
,
\iiint\limits_V\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_SP\,\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y,
V∭(∂x∂P+∂y∂Q+∂z∂R)dxdydz=S∬Pdydz+Qdzdx+Rdxdy,
其中
S
S
S取外侧。
Stokes公式
建立沿空间双侧曲面的积分与沿其边界曲线的积分之间的联系。
右手法则
人沿着曲面边界前进,左手边为指定的一侧,正向;右手边为指定的一侧,负向。
定理
设光滑曲面
S
S
S的边界
L
L
L是按段光滑的连续曲线。若函数
P
,
Q
,
R
P,\,Q,\,R
P,Q,R在
S
S
S(连同
L
L
L)上连续,且有一阶连续偏导数,则
∬
S
(
∂
R
∂
y
−
∂
Q
∂
z
)
d
y
d
z
+
(
∂
P
∂
z
−
∂
R
∂
x
)
d
z
d
x
+
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
x
d
y
=
∮
L
P
d
x
+
Q
d
y
+
R
d
z
,
\begin{aligned} &\iint\limits_S\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)\,\mathrm{d}y\mathrm{d}z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)\,\mathrm{d}z\mathrm{d}x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,\mathrm{d}x\mathrm{d}y\\ &=\oint_LP\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z, \end{aligned}
S∬(∂y∂R−∂z∂Q)dydz+(∂z∂P−∂x∂R)dzdx+(∂x∂Q−∂y∂P)dxdy=∮LPdx+Qdy+Rdz,
其中
S
S
S的侧与
L
L
L的方向按右手法则确定。
另一种形式
∬ S ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∮ L P d x + Q d y + R d z , \iint\limits_S \begin{vmatrix} \mathrm{d}y\mathrm{d}z & \mathrm{d}z\mathrm{d}x & \mathrm{d}x\mathrm{d}y\\\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\\\ P & Q & R \end{vmatrix} =\oint_LP\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z, S∬ dydz∂x∂Pdzdx∂y∂Qdxdy∂z∂R =∮LPdx+Qdy+Rdz,
空间曲线积分与路线的无关性
设 Ω ⊂ R 3 \varOmega\subset\mathbb{R^3} Ω⊂R3为空间单连通区域,若函数 P , Q , R P,\,Q,\,R P,Q,R在 Ω \varOmega Ω上连续,且具有一阶连续偏导数,则下列的四个条件等价:
-
沿 Ω \varOmega Ω内任一按段光滑封闭曲线 L L L有:
∮ L P d x + Q d y + R d z = 0 ; \oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y+R\,\mathrm{d}z=0; ∮LPdx+Qdy+Rdz=0; -
对 Ω \varOmega Ω中任一按段光滑曲线 L L L,曲线积分 ∫ L P d x + Q d y + R d z \int_LP\mathrm{d}x+Q\mathrm{d}y+R\,\mathrm{d}z ∫LPdx+Qdy+Rdz与路线无关;
-
P d x + Q d y + R d z P\mathrm{d}x+Q\mathrm{d}y+R\,\mathrm{d}z Pdx+Qdy+Rdz是 Ω \varOmega Ω内某一函数 u u u的全微分,即在 Ω \varOmega Ω内有 d u = P d x + Q d y + R d z \mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y+R\,\mathrm{d}z du=Pdx+Qdy+Rdz;
-
在 Ω \varOmega Ω内处处成立
∂ P ∂ y = ∂ Q ∂ x , ∂ Q ∂ z = ∂ R ∂ y , ∂ R ∂ x = ∂ P ∂ z . \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y},\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}. ∂y∂P=∂x∂Q,∂z∂Q=∂y∂R,∂x∂R=∂z∂P.