曲线曲面积分、重积分总结

写在前面

总结常见的各种曲线曲面积分以及重积分,参考华东师大版《数学分析(下册)》(第四版)。

曲线积分

研究定义在平面或空间曲线段上的函数的积分。

第一型曲线积分

引入

利用密度函数的积分求质量,即在计算质量分布在平面(二维)或空间曲线段(三维) L L L上的物体的质量时,使用第一型曲线积分。第一型曲线积分与曲线的方向无关

定义

L L L为平面上可求长度的曲线段, f ( x ,   y ) f(x,\,y) f(x,y)是定义在 L L L上的函数。对曲线 L L L作分割 T T T,它把 L L L分割成 n n n个可求长度的小曲线段 L i   ( i = 1 ,   2 ,   ⋯   ,   n ) L_i\,(i=1,\,2,\,\cdots,\,n) Li(i=1,2,,n) L i L_i Li的弧长记为 Δ s i \Delta s_i Δsi,分割 T T T的细度为 ∥ T ∥ = max ⁡ 1 ⩽ i ⩽ n Δ s i \|T\|=\max\limits_{1\leqslant i\leqslant n}\Delta s_i T=1inmaxΔsi,在 L i L_i Li上任取一点 ( ξ i ,   η i ) ,   i = 1 ,   2 ,   ⋯   ,   n (\xi_i,\,\eta_i),\,i=1,\,2,\,\cdots,\,n (ξi,ηi),i=1,2,,n. 若有极限
lim ⁡ ∥ T ∥ → 0 ∑ i = 1 n f ( ξ i ,   η i )   Δ s i = J , \lim_{\|T\|\to0}\sum_{i=1}^nf(\xi_i,\,\eta_i)\,\Delta s_i=J, T0limi=1nf(ξi,ηi)Δsi=J,
J J J的值与分割 T T T、点 ( ξ i ,   η i ) (\xi_i,\,\eta_i) (ξi,ηi)的取法无关,则称此极限为 f ( x ,   y ) f(x,\,y) f(x,y) L L L上的第一型曲线积分,记作
∫ L f ( x ,   y )   d s . \int_Lf(x,\,y)\,\mathrm{d}s. Lf(x,y)ds.

性质

  1. 线性性;

  2. 区间可加性;

  3. 积分不等式;

  4. 绝对值不等式;

  5. ∫ L f ( x ,   y )   d s \int_Lf(x,\,y)\,\mathrm{d}s Lf(x,y)ds存在, L L L的弧长为 s s s,则存在常数 c c c,使得
    ∫ L f ( x ,   y )   d s = c s , \int_Lf(x,\,y)\,\mathrm{d}s=cs, Lf(x,y)ds=cs,
    这里 inf ⁡ L f ( x ,   y ) ⩽ c ⩽ sup ⁡ L f ( x ,   y ) \inf\limits_Lf(x,\,y)\leqslant c\leqslant\sup\limits_Lf(x,\,y) Linff(x,y)cLsupf(x,y).

  6. 几何意义:以定义在平面 O x y Oxy Oxy上的分段光滑曲线 L L L为准线,母线平行于 z z z轴的柱面截取 0 ⩽ z ⩽ f ( x ,   y ) 0\leqslant z\leqslant f(x,\,y) 0zf(x,y)部分的面积。

计算方法

定理

设有光滑曲线
L : { x = φ ( t ) , y = ψ ( t ) , t ∈ [ α ,   β ] , L: \begin{cases} x=\varphi(t),\\ y=\psi(t), \end{cases} \quad t\in [\alpha,\,\beta], L:{x=φ(t),y=ψ(t),t[α,β],
函数 f ( x ,   y ) f(x,\,y) f(x,y)为定义在 L L L上的连续函数,则有
∫ L f ( x ,   y )   d s = ∫ α β f ( φ ( t ) ,   ψ ( t ) ) φ ′ 2 ( t ) + ψ ′ 2 ( t )     d t . \int_Lf(x,\,y)\,\mathrm{d}s=\int_\alpha^\beta f(\varphi(t),\,\psi(t))\sqrt{\varphi'^2(t)+\psi'^2(t)\,}\,\mathrm{d}t. Lf(x,y)ds=αβf(φ(t),ψ(t))φ′2(t)+ψ′2(t) dt.
证明思路:由弧长公式和积分中值定理得到。

另一种常用的格式

当曲线 L L L由方程 y = ψ ( x ) ,    x ∈ [ a ,   b ] y=\psi(x),\,\,x\in[a,\,b] y=ψ(x),x[a,b]表示,且 ψ ( x ) \psi(x) ψ(x) [ a ,   b ] [a,\,b] [a,b]上有连续导函数时,有
∫ L f ( x ,   y )   d s = ∫ α β f ( x ,   ψ ( x ) ) 1 + ψ ′ 2 ( t )     d x . \int_Lf(x,\,y)\,\mathrm{d}s=\int_\alpha^\beta f(x,\,\psi(x))\sqrt{1+\psi'^2(t)\,}\,\mathrm{d}x. Lf(x,y)ds=αβf(x,ψ(x))1+ψ′2(t) dx.

第二型曲线积分

引入

物理学中的变力做功问题。第二型曲线积分与曲线的方向有关。

定义

设函数 P ( x ,   y ) ,   Q ( x ,   y ) P(x,\,y),\ Q(x,\,y) P(x,y), Q(x,y)定义在平面有向可求长度曲线 L : A B ⌢ L:\stackrel{\LARGE{\frown}}{AB} L:AB上。对 L L L的任一分割 T T T, 它把 L L L分成 n n n个小弧段
M i − 1 M i ^ ( i = 1 ,   2 ,   ⋯   ,   n ) \widehat{M_{i-1}M_i}\quad (i=1,\,2,\,\cdots,\,n) Mi1Mi (i=1,2,,n)
其中 M 0 = A ,   M n = B M_0=A,\,M_n=B M0=A,Mn=B, 记各小弧段 M i − 1 M i ^ \widehat{M_{i-1}M_i} Mi1Mi 的弧长为 Δ s i \Delta s_i Δsi,分割 T T T的细度 ∥ T ∥ = max ⁡ 1 ⩽ i ⩽ n Δ s i \|T\|=\max\limits_{1\leqslant i\leqslant n}\Delta s_i T=1inmaxΔsi. 又设 T T T的分点 M i M_i Mi的坐标为 ( x i ,   y i ) (x_i,\,y_i) (xi,yi),记 Δ x i = x i − x i − 1 ,   Δ y i = y i − y i − 1   ( i = 1 ,   2 ,   ⋯   ,   n ) \Delta x_i=x_i-x_{i-1},\,\Delta y_i=y_i-y_{i-1}\,(i=1,\,2,\,\cdots,\,n) Δxi=xixi1,Δyi=yiyi1(i=1,2,,n)。在每个小弧段 M i − 1 M i ^ \widehat{M_{i-1}M_i} Mi1Mi 上任取一点 ( ξ i ,   η i ) (\xi_i,\,\eta_i) (ξi,ηi),若极限
lim ⁡ ∥ T ∥ → 0 ∑ i = 1 n P ( ξ i ,   η i )   Δ x i + lim ⁡ ∥ T ∥ → 0 ∑ i = 1 n Q ( ξ i ,   η i )   Δ y i \lim_{\|T\|\to0}\sum_{i=1}^nP(\xi_i,\,\eta_i)\,\Delta x_i+\lim_{\|T\|\to0}\sum_{i=1}^nQ(\xi_i,\,\eta_i)\,\Delta y_i T0limi=1nP(ξi,ηi)Δxi+T0limi=1nQ(ξi,ηi)Δyi
存在且与分割 T T T与点 ( ξ i ,   η i ) (\xi_i,\,\eta_i) (ξi,ηi)的取法无关,则称此极限为函数 P ( x ,   y ) ,   Q ( x ,   y ) P(x,\,y),\,Q(x,\,y) P(x,y),Q(x,y)沿有向曲线 L L L上的第二型曲线积分,记为
∫ L P ( x ,   y )   d x + Q ( x ,   y )   d y 或 ∫ A B P ( x ,   y )   d x + Q ( x ,   y )   d y . \int_LP(x,\,y)\,\mathrm{d}x+Q(x,\,y)\,\mathrm{d}y\quad\text{或}\quad\int_{AB}P(x,\,y)\,\mathrm{d}x+Q(x,\,y)\,\mathrm{d}y. LP(x,y)dx+Q(x,y)dyABP(x,y)dx+Q(x,y)dy.
L L L为封闭的有向曲线,则记为
∮ L P   d x + Q   d y . \oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y. LPdx+Qdy.

性质

  1. 线性性;
  2. 有向线段首尾相接,积分值不变(向量加法);
  3. 方向改变,符号相反,即: ∫ A B P   d x + Q   d y = − ∫ B A P   d x + Q   d y \int_{AB}P\,\mathrm{d}x+Q\,\mathrm{d}y=-\int_{BA}P\,\mathrm{d}x+Q\,\mathrm{d}y ABPdx+Qdy=BAPdx+Qdy.

计算

设平面曲线
L : { x = φ ( t ) , y = ψ ( t ) , t ∈ [ α ,   β ] , L:\begin{cases}x=\varphi(t),\\y=\psi(t),\end{cases}\quad t\in [\alpha,\,\beta], L:{x=φ(t),y=ψ(t),t[α,β],
其中 φ ( t ) ,   ψ ( t ) \varphi(t),\,\psi(t) φ(t),ψ(t) [ α ,   β ] [\alpha,\,\beta] [α,β]上具有一阶连续导函数,且 A = ( φ ( α ) ,   ψ ( α ) ) ,   B = ( φ ( β ) ,   ψ ( β ) ) A=\big(\varphi(\alpha),\,\psi(\alpha)\big),\,B=\big(\varphi(\beta),\,\psi(\beta)\big) A=(φ(α),ψ(α)),B=(φ(β),ψ(β)),又设 P ( x ,   y ) P(x,\,y) P(x,y) Q ( x ,   y ) Q(x,\,y) Q(x,y) L L L上的连续函数,则沿 L L L A A A B B B的第二型曲线积分
∫ A B P ( x ,   y )   d x + Q ( x ,   y )   d y = ∫ α β [ P ( φ ( t ) ,   ψ ( t ) )   φ ′ ( t ) + Q ( φ ( t ) ,   ψ ( t ) )   ψ ′ ( t ) ]   d t . \begin{aligned} &\int_{AB}P(x,\,y)\,\mathrm{d}x+Q(x,\,y)\,\mathrm{d}y\\ =&\int_\alpha^\beta \Big[P(\varphi(t),\,\psi(t))\,\varphi'(t)+Q(\varphi(t),\,\psi(t))\,\psi'(t)\Big]\,\mathrm{d}t. \end{aligned} =ABP(x,y)dx+Q(x,y)dyαβ[P(φ(t),ψ(t))φ(t)+Q(φ(t),ψ(t))ψ(t)]dt.

二重积分

引入

计算曲顶柱体的体积。

定义

与定积分类似。

性质

  1. 线性性;

  2. 积分不等式;

  3. 积分的绝对值不等式;

  4. 若函数 f ( x ,   y ) f(x,\,y) f(x,y) D 1 ,   D 2 D_1,\,D_2 D1,D2上都可积,且 D 1 ,   D 2 D_1,\,D_2 D1,D2没有公共内点,则 f ( x ,   y ) f(x,\,y) f(x,y) D 1 ⋃ D 2 D_1\bigcup D_2 D1D2上也可积,且
    ∬ D 1 ⋃ D 2 f ( x ,   y )   d σ = ∬ D 1 f ( x ,   y )   d σ + ∬ D 2 f ( x ,   y )   d σ . \iint\limits_{D_1\bigcup D_2}f(x,\,y)\,\mathrm{d}\sigma=\iint\limits_{D_1}f(x,\,y)\,\mathrm{d}\sigma+\iint\limits_{D_2}f(x,\,y)\,\mathrm{d}\sigma. D1D2f(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ.

  5. f ( x ,   y ) f(x,\,y) f(x,y) D D D上可积,且
    m ⩽ f ( x ,   y ) ⩽ M , ( x ,   y ) ∈ D , m\leqslant f(x,\,y)\leqslant M,\quad(x,\,y)\in D, mf(x,y)M,(x,y)D,

    m S D ⩽ ∬ D f ( x ,   y )   d σ ⩽ M S D , mS_D\leqslant\iint\limits_{D}f(x,\,y)\,\mathrm{d}\sigma\leqslant MS_D, mSDDf(x,y)dσMSD,
    这里 S D S_D SD为积分区域 D D D的面积;

  6. (中值定理)若 f ( x ,   y ) f(x,\,y) f(x,y)在有界闭域 D D D上连续,则存在 ( ξ ,   η ) ∈ D (\xi,\,\eta)\in D (ξ,η)D,使得
    ∬ D f ( x ,   y )   d σ = f ( ξ ,   η ) S D . \iint\limits_{D}f(x,\,y)\,\mathrm{d}\sigma=f(\xi,\,\eta)S_D. Df(x,y)dσ=f(ξ,η)SD.
    其几何意义是:以 D D D为底, x = f ( x ,   y )   ( f ( x ,   y ) ⩾ 0 ) x=f(x,\,y)\ \big(f(x,\,y)\geqslant0\big) x=f(x,y) (f(x,y)0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,此平顶柱体的高等于 f ( x ,   y ) f(x,\,y) f(x,y)在区域 D D D中某点 ( ξ ,   η ) (\xi,\,\eta) (ξ,η)的函数值 f ( ξ ,   η ) f(\xi,\,\eta) f(ξ,η).

Green公式

若函数 P ( x ,   y ) ,   Q ( x ,   y ) P(x,\,y),\,Q(x,\,y) P(x,y),Q(x,y)在闭区域 D D D上连续,且有连续的一阶偏导数,则有
∬ ( ∂ Q ∂ x − ∂ P ∂ y )   d σ = ∮ L P   d x + Q   d y , \iint\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,\mathrm{d}\sigma=\oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y, (xQyP)dσ=LPdx+Qdy,

这里 L L L为区域 D D D的边界曲线,并取正方向

Green公式联系了第二型曲线积分与二重积分。

曲线积分与路线的无关性

D D D单连通区域,若函数 P ( x ,   y ) ,   Q ( x ,   y ) P(x,\,y),\,Q(x,\,y) P(x,y),Q(x,y) D D D内连续,且具有一阶连续偏导数,则下列的四个条件等价:

  1. 沿 D D D内任一按段光滑封闭曲线 L L L有:
    ∮ L P   d x + Q   d y = 0 ; \oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y=0; LPdx+Qdy=0;

  2. D D D中任一按段光滑曲线 L L L,曲线积分 ∫ L P d x + Q d y \int_LP\mathrm{d}x+Q\mathrm{d}y LPdx+Qdy与路线无关,只与 L L L起始点的选取有关;

  3. P d x + Q d y P\mathrm{d}x+Q\mathrm{d}y Pdx+Qdy D D D内某一函数 u ( x ,   y ) u(x,\,y) u(x,y)的全微分,即在 D D D内有 d u = P d x + Q d y \mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y du=Pdx+Qdy;

  4. D D D内处处成立
    ∂ P ∂ y = ∂ Q ∂ x . \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}. yP=xQ.

变量替换

直角坐标变换

用于一般的变量替换。

f ( x ,   y ) f(x,\,y) f(x,y)在有界闭域 D D D上可积,变换 T : x = x ( u ,   v ) ,   y = y ( u ,   v ) T:x=x(u,\,v),\,y=y(u,\,v) T:x=x(u,v),y=y(u,v)将平面由按段光滑封闭曲线所围成的闭区域 Δ \Delta Δ一对一地映成 x y xy xy平面上的闭区域 D D D,函数 x ( u ,   v ) ,   y ( u ,   v ) x(u,\,v),\,y(u,\,v) x(u,v),y(u,v) Δ \Delta Δ内分别具有一阶连续偏导数,且它们的函数行列式
J ( u ,   v ) = ∂ ( x ,   y ) ∂ ( u ,   v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ ≠ 0 , ( u ,   v ) ∈ Δ , J(u,\,v)=\frac{\partial (x,\,y)}{\partial (u,\,v)}= \begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{vmatrix} \neq0,\quad(u,\,v)\in \Delta, J(u,v)=(u,v)(x,y)= uxuyvxvy =0,(u,v)Δ,

∬ D f ( x ,   y )   d x d y = ∬ D f ( x ( u ,   v ) ,   y ( u ,   v ) ) ∣ J ( u ,   v ) ∣   d u d v . \iint\limits_{D}f(x,\,y)\,\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f\big(x(u,\,v),\,y(u,\,v)\big)\big|J(u,\,v)\big|\,\mathrm{d}u\mathrm{d}v. Df(x,y)dxdy=Df(x(u,v),y(u,v)) J(u,v) dudv.

极坐标变换

常用于 x 2 + y 2 x^2+y^2 x2+y2类型出现在被积函数中的情况,利用极坐标变换可以更有效地化简积分。

f ( x ,   y ) f(x,\,y) f(x,y)在有界闭域 D D D上可积,且在极坐标变换
T : { x = r cos ⁡ θ , y = r sin ⁡ θ , 0 ⩽ r < + ∞ ,   0 ⩽ θ ⩽ 2 π T: \begin{cases} x=r\cos\theta,\\ y=r\sin\theta, \end{cases} \quad 0\leqslant r<+\infty,\,0\leqslant\theta\leqslant2\pi T:{x=rcosθ,y=rsinθ,0r<+,0θ2π
作用下, x y xy xy平面上有界区域 D D D r θ r\theta rθ平面上区域 Δ \Delta Δ对应,则成立
∬ D f ( x ,   y )   d x d y = ∬ D f ( r cos ⁡ θ ,   r sin ⁡ θ ) r   d r d θ . \iint\limits_{D}f(x,\,y)\,\mathrm{d}x\mathrm{d}y=\iint\limits_{D}f(r\cos\theta,\,r\sin\theta)r\,\mathrm{d}r\mathrm{d}\theta. Df(x,y)dxdy=Df(rcosθ,rsinθ)rdrdθ.

广义极坐标变换

T : { x = a r cos ⁡ θ , y = b r sin ⁡ θ , 0 ⩽ r < + ∞ ,   0 ⩽ θ ⩽ 2 π T: \begin{cases} x=ar\cos\theta,\\ y=br\sin\theta, \end{cases} \quad 0\leqslant r<+\infty,\,0\leqslant\theta\leqslant2\pi T:{x=arcosθ,y=brsinθ,0r<+,0θ2π

则有 J ( r ,   θ ) = a b r J(r,\,\theta)=abr J(r,θ)=abr.

三重积分

引入

对密度函数进行积分,求一个空间立体的质量,就可导出三重积分。

化成累次积分

“先切条,后扎捆”:先对高积分,后对截面积分

若函数 f ( x ,   y ,   z ) f(x,\,y,\,z) f(x,y,z)在长方体 V = [ a ,   b ] × [ c ,   d ] × [ e ,   h ] V=[a,\,b]\times[c,\,d]\times[e,\,h] V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意 ( x ,   y ) ∈ [ a ,   b ] × [ c ,   d ] (x,\,y)\in[a,\,b]\times[c,\,d] (x,y)[a,b]×[c,d] g ( x ,   y ) = ∫ a b f ( x ,   y ,   z )   d z g(x,\,y)=\int_a^bf(x,\,y,\,z)\,\mathrm{d}z g(x,y)=abf(x,y,z)dz存在,则积分 ∬ D g ( x ,   y )   d x d y \iint\limits_Dg(x,\,y)\,\mathrm{d}x\mathrm{d}y Dg(x,y)dxdy也存在,且
∭ V f ( x ,   y ,   z )   d x d y d z = ∬ D   d x d y ∫ e h f ( x ,   y ,   z )   d z . \iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_D\,\mathrm{d}x\mathrm{d}y\int_e^hf(x,\,y,\,z)\,\mathrm{d}z. Vf(x,y,z)dxdydz=Ddxdyehf(x,y,z)dz.
推论:

对于上下限可变的情形,可类似得到
∭ V f ( x ,   y ,   z )   d x d y d z = ∬ D   d x d y ∫ z 1 ( x ,   y ) z 2 ( x ,   y ) f ( x ,   y ,   z )   d z , \iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_D\,\mathrm{d}x\mathrm{d}y\int_{z_1(x,\,y)}^{z_2(x,\,y)}f(x,\,y,\,z)\,\mathrm{d}z, Vf(x,y,z)dxdydz=Ddxdyz1(x,y)z2(x,y)f(x,y,z)dz,
此时 D D D V V V O x y Oxy Oxy平面上的投影。

“先切面,后叠加”:先对截面积分,后对高积分

若函数 f ( x ,   y ,   z ) f(x,\,y,\,z) f(x,y,z)在长方体 V = [ a ,   b ] × [ c ,   d ] × [ e ,   h ] V=[a,\,b]\times[c,\,d]\times[e,\,h] V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意 x ∈ [ a ,   b ] x\in[a,\,b] x[a,b],二重积分 I ( x ) = ∬ D f ( x ,   y ,   z )   d y d z I(x)=\iint\limits_Df(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z I(x)=Df(x,y,z)dydz存在,其中 D = [ c ,   d ] × [ e ,   h ] D=[c,\,d]\times[e,\,h] D=[c,d]×[e,h],则积分 ∫ a b   d x ∬ D f ( x ,   y ,   z )   d y d z \int_a^b\,\mathrm{d}x\iint\limits_Df(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z abdxDf(x,y,z)dydz也存在,且
∭ V f ( x ,   y ,   z )   d x d y d z = ∫ a b   d x ∬ D f ( x ,   y ,   z )   d y d z . \iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_a^b\,\mathrm{d}x\iint\limits_Df(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z. Vf(x,y,z)dxdydz=abdxDf(x,y,z)dydz.
推论(常用):

若函数 f ( x ,   y ,   z ) f(x,\,y,\,z) f(x,y,z)在长方体 V ⊂ [ a ,   b ] × [ c ,   d ] × [ e ,   h ] V\subset[a,\,b]\times[c,\,d]\times[e,\,h] V[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意固定的 z ∈ [ e ,   h ] z\in[e,\,h] z[e,h],积分 φ ( z ) = ∬ D z f ( x ,   y ,   z )   d y d z \varphi(z)=\iint\limits_{D_z}f(x,\,y,\,z)\,\mathrm{d}y\mathrm{d}z φ(z)=Dzf(x,y,z)dydz存在,其中 D z D_z Dz为截面 { ( x ,   y )   ∣   ( x ,   y ,   z ) ∈ V } \big\{(x,\,y)\,\big|\,(x,\,y,\,z)\in V\big\} {(x,y) (x,y,z)V},则积分 ∫ e h φ ( z )   d z \int_e^h\varphi(z)\,\mathrm{d}z ehφ(z)dz存在,且
∭ V f ( x ,   y ,   z )   d x d y d z = ∫ e h φ ( z )   d z = ∫ e h   d z ∬ D z f ( x ,   y ,   z )   d x d y . \iiint\limits_Vf(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_e^h\varphi(z)\,\mathrm{d}z=\int_e^h\,\mathrm{d}z\iint\limits_{D_z}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y. Vf(x,y,z)dxdydz=ehφ(z)dz=ehdzDzf(x,y,z)dxdy.

变量替换

一般情况

∭ V f ( x ,   y ,   z )   d x d y d z = ∭ V ′ f ( x ( u ,   v ,   w ) ,   y ( u ,   v ,   w ) ,   z ( u ,   v ,   w ) ) ∣ J ( u ,   v ,   w ) ∣   d u d v d w . \begin{aligned} &\iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &=\iiint\limits_{V'}f\big(x(u,\,v,\,w),\,y(u,\,v,\,w),\,z(u,\,v,\,w)\big)\big|J(u,\,v,\,w)\big|\,\mathrm{d}u\mathrm{d}v\mathrm{d}w.\end{aligned} Vf(x,y,z)dxdydz=Vf(x(u,v,w),y(u,v,w),z(u,v,w)) J(u,v,w) dudvdw.

柱面坐标变换

∭ V f ( x ,   y ,   z )   d x d y d z = ∭ V ′ f ( r cos ⁡ θ ,   r sin ⁡ θ ,   z ) r   d r d θ d z . \iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iiint\limits_{V'}f(r\cos\theta,\,r\sin\theta,\,z)r\,\mathrm{d}r\mathrm{d}\theta\mathrm{d}z. Vf(x,y,z)dxdydz=Vf(rcosθ,rsinθ,z)rdrdθdz.

球坐标变换

∭ V f ( x ,   y ,   z )   d x d y d z = ∭ V ′ f ( r sin ⁡ φ cos ⁡ θ ,   r sin ⁡ φ sin ⁡ θ ,   r cos ⁡ φ ) r 2 sin ⁡ φ   d r d φ d θ . \begin{aligned} &\iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &=\iiint\limits_{V'}f(r\sin\varphi\cos\theta,\,r\sin\varphi\sin\theta,\,r\cos\varphi)r^2\sin\varphi\,\mathrm{d}r\mathrm{d}\varphi\mathrm{d}\theta.\end{aligned} Vf(x,y,z)dxdydz=Vf(rsinφcosθ,rsinφsinθ,rcosφ)r2sinφdrdφdθ.

广义球坐标变换

∭ V f ( x ,   y ,   z )   d x d y d z = ∭ V ′ f ( a r sin ⁡ φ cos ⁡ θ ,   b r sin ⁡ φ sin ⁡ θ ,   c r cos ⁡ φ ) a b c r 2 sin ⁡ φ   d r d φ d θ . \begin{aligned} &\iiint\limits_{V}f(x,\,y,\,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z\\ &=\iiint\limits_{V'}f(ar\sin\varphi\cos\theta,\,br\sin\varphi\sin\theta,\,cr\cos\varphi)abcr^2\sin\varphi\,\mathrm{d}r\mathrm{d}\varphi\mathrm{d}\theta.\end{aligned} Vf(x,y,z)dxdydz=Vf(arsinφcosθ,brsinφsinθ,crcosφ)abcr2sinφdrdφdθ.

曲面积分

第一型曲面积分

引入

可类比第一型曲线积分,不过此时质量分布在某一曲面块上而非曲线上。

计算

设有光滑曲面
S : z = z ( x ,   y ) ,    ( x ,   y ) ∈ D , S:z=z(x,\,y),\ \ (x,\,y)\in D, S:z=z(x,y),  (x,y)D,
f ( x ,   y ,   z ) f(x,\,y,\,z) f(x,y,z) S S S上的连续函数,则
∬ S f ( x ,   y ,   z )   d S = ∬ D f ( x ,   y ,   z ( x ,   y ) ) 1 + z x 2 + z y 2     d x d y . \iint\limits_Sf(x,\,y,\,z)\,\mathrm{d}S=\iint\limits_Df\big(x,\,y,\,z(x,\,y)\big)\sqrt{1+z_x^2+z_y^2\,}\,\mathrm{d}x\mathrm{d}y. Sf(x,y,z)dS=Df(x,y,z(x,y))1+zx2+zy2 dxdy.

第二型曲面积分

曲面的侧

通常由 z = z ( x ,   y ) z=z(x,\,y) z=z(x,y)所表示的曲面都是双侧曲面,当以其法线正方向与 z z z轴正向的夹脚成锐角的一侧(上侧)为正侧时,则另一侧(下侧)为负侧。当 S S S为封闭曲面时,常规定曲面外侧为正侧,内侧为负侧。

引入

计算流体以以一定的流速从曲面负侧向正侧流动时产生的流量。

性质

  1. 线性性;
  2. 积分曲面的加性。

计算

R R R是定义在光滑曲面 S : z = z ( x ,   y ) ,    ( x ,   y ∈ D x y ) S:z=z(x,\,y),\ \ (x,\,y\in D_{xy}) S:z=z(x,y),  (x,yDxy)上的连续函数,以 S S S的上侧为正侧(这时 S S S的法线方向与 z z z轴正向成锐角),则有
∬ S R ( x ,   y ,   z )   d S = ∬ D x y R ( x ,   y ,   z ( x ,   y ) )   d x d y . \iint\limits_SR(x,\,y,\,z)\,\mathrm{d}S=\iint\limits_{D_{xy}}R\big(x,\,y,\,z(x,\,y)\big)\,\mathrm{d}x\mathrm{d}y. SR(x,y,z)dS=DxyR(x,y,z(x,y))dxdy.

Gauss公式

建立沿空间闭曲面的曲面积分和三重积分之间的联系。

定理

设空间区域 V V V由分片光滑的双侧封闭曲面 S S S围成。若函数 P ,   Q ,   R P,\,Q,\,R P,Q,R V V V上连续,且有一阶连续偏导数,则
∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z )   d x d y d z = ∯ S P   d y d z + Q d z d x + R d x d y , \iiint\limits_V\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\oiint\limits_SP\,\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y, V(xP+yQ+zR)dxdydz=S Pdydz+Qdzdx+Rdxdy,
其中 S S S外侧

Stokes公式

建立沿空间双侧曲面的积分与沿其边界曲线的积分之间的联系。

右手法则

人沿着曲面边界前进,左手边为指定的一侧,正向;右手边为指定的一侧,负向。

定理

设光滑曲面 S S S的边界 L L L是按段光滑的连续曲线。若函数 P ,   Q ,   R P,\,Q,\,R P,Q,R S S S(连同 L L L)上连续,且有一阶连续偏导数,则
∬ S ( ∂ R ∂ y − ∂ Q ∂ z )   d y d z + ( ∂ P ∂ z − ∂ R ∂ x )   d z d x + ( ∂ Q ∂ x − ∂ P ∂ y )   d x d y = ∮ L P d x + Q d y + R d z , \begin{aligned} &\iint\limits_S\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)\,\mathrm{d}y\mathrm{d}z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)\,\mathrm{d}z\mathrm{d}x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,\mathrm{d}x\mathrm{d}y\\ &=\oint_LP\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z, \end{aligned} S(yRzQ)dydz+(zPxR)dzdx+(xQyP)dxdy=LPdx+Qdy+Rdz,
其中 S S S的侧与 L L L的方向按右手法则确定。

另一种形式

∬ S ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∮ L P d x + Q d y + R d z , \iint\limits_S \begin{vmatrix} \mathrm{d}y\mathrm{d}z & \mathrm{d}z\mathrm{d}x & \mathrm{d}x\mathrm{d}y\\\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\\\ P & Q & R \end{vmatrix} =\oint_LP\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z, S dydzxPdzdxyQdxdyzR =LPdx+Qdy+Rdz,

空间曲线积分与路线的无关性

Ω ⊂ R 3 \varOmega\subset\mathbb{R^3} ΩR3为空间单连通区域,若函数 P ,   Q ,   R P,\,Q,\,R P,Q,R Ω \varOmega Ω上连续,且具有一阶连续偏导数,则下列的四个条件等价:

  1. 沿 Ω \varOmega Ω​内任一按段光滑封闭曲线 L L L有:
    ∮ L P   d x + Q   d y + R   d z = 0 ; \oint_LP\,\mathrm{d}x+Q\,\mathrm{d}y+R\,\mathrm{d}z=0; LPdx+Qdy+Rdz=0;

  2. Ω \varOmega Ω中任一按段光滑曲线 L L L,曲线积分 ∫ L P d x + Q d y + R   d z \int_LP\mathrm{d}x+Q\mathrm{d}y+R\,\mathrm{d}z LPdx+Qdy+Rdz与路线无关;

  3. P d x + Q d y + R   d z P\mathrm{d}x+Q\mathrm{d}y+R\,\mathrm{d}z Pdx+Qdy+Rdz Ω \varOmega Ω内某一函数 u u u的全微分,即在 Ω \varOmega Ω内有 d u = P d x + Q d y + R   d z \mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y+R\,\mathrm{d}z du=Pdx+Qdy+Rdz;

  4. Ω \varOmega Ω内处处成立
    ∂ P ∂ y = ∂ Q ∂ x , ∂ Q ∂ z = ∂ R ∂ y , ∂ R ∂ x = ∂ P ∂ z . \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y},\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}. yP=xQ,zQ=yR,xR=zP.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值