之前有看过状压dp的教学视频,讲的太烂了,这次找到一个良心博主,讲的很好,算是入门状压dp了
传送门 : 状压dp入门
状态压缩dp,这道题是把0,1转化成二进制数,再用十进制数表示,通过位运算实现问题的解决,解题过程趋于暴力,但由于状态进行了压缩所以并不会很慢,其解题过程更像是一个递推过程,从上往下将每一种可能的情况计算并保留,当然要先初始化第一行,剩下的就是递推了,博客里讲的很清楚,我对着他的代码也写了很多备注,希望早点掌握
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
#define mod 100000000
int m, n;
int top;//所有可能情况中的最大值
int state[600];//所有合理的情况
int dp[20][600];
int cur[20];//每一行的实际存储情况
int num;
bool ok(int x)//找出所有可能情况
{
return (x & x << 1) ? 0 : 1;
}
void init()
{
top = 0;
int total = 1 << m;
for(int i = 0; i < total; i ++)
if(ok(i))state[++ top] = i;
memset(dp, 0, sizeof(dp));
}
bool fit(int x, int k)//判断两种情况是否可以共存
{
return (x & cur[k]) ? 0 : 1;
}
int main()
{
while(scanf("%d%d",&n,&m) != EOF)
{
init();
for(int i = 1; i <= n; i ++)
{
cur[i] = 0;
for(int j = 1; j <= m; j ++)
{
scanf("%d",&num);
if(! num)
cur[i] += (1<<(m-j));//将1变为0,0变为1保存到cur里
}
}
for(int i = 1; i <= top; i ++)//如果返回1说明二者无重合部分,即第一行正确的情况
{
if(fit(state[i], 1))
dp[1][i] = 1;
}
for(int i = 2; i <= n; i ++)//从第2行开始
{
for(int j = 1; j <= top; j ++)//找到一个符合第i行情况的state[j]
{
if(!fit(state[j], i)) continue;
for(int k = 1; k <= top; k ++)//再找到一个符合第i-1行情况的state[k]
{
if(! fit(state[k],i-1))continue;
if(state[j]&state[k])continue;
dp[i][j] = (dp[i][j]+dp[i-1][k])%mod;//如果可以共存,则加到第i行的j状态上,即dp[i][j]
}
}
}
int ans = 0;
for(int i = 1; i <= top; i ++)
ans = (ans + dp[n][i]) % mod;//之前状态的累加
printf("%d\n",ans);
}
return 0;
}