这道题,我还是不会!只能看题解才维持得了生活
思路 : 利用二进制数串保存行走情况,由小到大逐步dp更新最优解,提前用floyd打好两点之间最短路的表,从每一个点开始遍历每一种状态,由于我们更新的是0-(1<<n-1),最后还差一个 0,也就是返回起点。
没事的时候自己敲几遍状压dp,不信掌握不了!!!
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
#define inf 0x3f3f3f3f
int dis[12][12];
int dp[1050][12];
int main()
{
int n;
while(scanf("%d",&n) != EOF && n)
{
for(int i = 0; i <= n; i ++)
for(int j = 0; j <= n; j ++)
scanf("%d",&dis[i][j]);
for(int k = 0; k <= n; k ++)//Floyd初始化最短路
for(int i = 0; i <= n; i ++)
for(int j = 0; j <= n; j ++)
dis[i][j] = min(dis[i][j], dis[i][k]+dis[k][j]);
for(int s = 0; s < (1<<n); s ++)//遍历 每一种状态
for(int i = 1; i <= n; i ++)
{
if(s & (1<<(i-1)))//如果已经经过了i点
{
if(s == (1<<(i-1)))//仅仅经过了i点
dp[s][i] = dis[0][i];
else//不仅经过了i,还经过了其他点
{
dp[s][i] = inf;
for(int j = 1; j <= n; j ++)
{
if(s&(1<<(j-1))&&j!=i)//找寻中间点j,求最短路(像区间dp思想,由小到大更新最优解)
dp[s][i] = min(dp[s^(1<<(i-1))][j]+dis[j][i],dp[s][i]);
}
}
}
}
int ans = inf;
for(int i = 1; i <= n; i ++)//已经走完,仅差回到起点
ans = min(ans, dp[(1<<n)-1][i]+dis[i][0]);
printf("%d\n",ans);
}
return 0;
}