L2-1 分而治之(25 分)
分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。
输入格式:
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] ... v[Np]
其中 Np
是该方案中计划攻下的城市数量,后面的系列 v[i]
是计划攻下的城市编号。
输出格式:
对每一套方案,如果可行就输出YES
,否则输出NO
。
输入样例:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
输出样例:
NO
YES
YES
NO
NO
看到的第一眼以为是并查集,结果并查集好像没法完成,然后就用map ,可以判断相邻国家是否还相邻。
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<bits/stdc++.h>
#include<map>
#define ll long long
const int maxn=10005;
using namespace std;
struct node
{
int x;
int y;
}ac[maxn];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
scanf("%d%d",&ac[i].x,&ac[i].y);
}
int t;
scanf("%d",&t);
while(t--)
{
int flag=0;
map<int,int>map1;
int q;
scanf("%d",&q);
for(int i=0;i<q;i++)
{
int q1;
scanf("%d",&q1);
map1[q1]=1;//讨伐国家
}
for(int i=0;i<m;i++)
{
if(map1[ac[i].x]!=1&&map1[ac[i].y]!=1)//判断两国家是否断裂,如果都不为1,就说明他俩依然相连
{
flag=1;
printf("NO\n");
break;
}
}
if(flag==0) printf("YES\n");
}
return 0;
}