L2-1 分而治之(25 分)
分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。
输入格式:
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (≤ 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] ... v[Np]
其中 Np
是该方案中计划攻下的城市数量,后面的系列 v[i]
是计划攻下的城市编号。
输出格式:
对每一套方案,如果可行就输出YES
,否则输出NO
。
输入样例:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
输出样例:
NO
YES
YES
NO
NO
孤立无援的意思是 任何两个城市都不连通
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
using namespace std;
int vis[10010];
struct node
{
int u,v;
} a[10010];
int main()
{
int n,m,k;
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>a[i].u>>a[i].v;
}
cin>>k;
while(k--)
{
int k1,flag=0,l;
cin>>k1;
memset(vis,0,sizeof(vis));
for(int i=1;i<=k1;i++)
{
cin>>l;
vis[l]=1;//去除
}
for(int i=1;i<=m;i++)
{
if(vis[a[i].u]||vis[a[i].v])
{//判断剩下的城市是否孤立 1代表不连通啊 0代表连通
continue; //0||0 = 0 属于else
//1||0 = 1
//0||1 = 1
//1||1 = 1
}
else
{
flag=1;
}
}
if(flag) cout<<"NO"<<endl;
else cout<<"YES"<<endl;
}return 0;
}