L2-1 分而治之

L2-1 分而治之(25 分)

分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。

输入格式:

输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K ( 100)和随后的 K 行方案,每行按以下格式给出:

Np v[1] v[2] ... v[Np]

其中 Np 是该方案中计划攻下的城市数量,后面的系列 v[i] 是计划攻下的城市编号。

输出格式:

对每一套方案,如果可行就输出YES,否则输出NO

输入样例:

10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2

输出样例:

NO
YES
YES
NO
NO    

孤立无援的意思是 任何两个城市都不连通    代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring> 
using namespace std;
int vis[10010];
struct node
{
	int u,v;
 } a[10010];
int main()
{
	int n,m,k;
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		cin>>a[i].u>>a[i].v;
	 } 
	 cin>>k;
	 while(k--)
	 {
	 	int k1,flag=0,l;
	 	cin>>k1;
	 	memset(vis,0,sizeof(vis));
	 	for(int i=1;i<=k1;i++)
	 	{
	 		cin>>l;
	 		vis[l]=1;//去除 
		 }
		 for(int i=1;i<=m;i++)
		 { 
		 	if(vis[a[i].u]||vis[a[i].v])
		 	{//判断剩下的城市是否孤立 1代表不连通啊 0代表连通
			   
		 		continue;     //0||0 = 0 属于else 
					      //1||0 = 1
					      //0||1 = 1
					      //1||1 = 1
			}
			 else 
			 {
			 	flag=1;
			
			 }
		 }
		 if(flag) cout<<"NO"<<endl;
		 else cout<<"YES"<<endl;
	 }return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值