openai-agents 安装与测试

安装

  1. 克隆仓库:
git clone https://github.com/openai/openai-agents-python.git
  1. 创建 conda 环境:
conda create --name oi_agents python=3.12 -y
  1. 激活环境并安装依赖:
activate oi_agents && pip install -e .

这三个命令分别用于:

  1. 从 GitHub 下载项目代码
  2. 创建一个 Python 3.12 的 conda 虚拟环境
  3. 激活创建的环境并以开发模式安装项目依赖

请注意在执行这些命令时要确保:

  • 已安装 Git
  • 已安装 Conda
  • 在正确的目录下执行命令

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

第一个例子

# 查看 openai-agents 包的详细信息
pip show openai-agents
# 输出显示包的版本、安装位置、依赖项等信息

# 从 agents 包中导入必要的类
from agents import Agent, Runner, RunConfig, OpenAIProvider

# 创建 AI 助手实例
# - name: 设置助手名称为 "Assistant"
# - instructions: 设置助手的基本指令
# - model: 使用 glm-4-flash 模型
agent = Agent(name="Assistant", instructions="You are a helpful assistant", model="glm-4-flash")

# 配置运行环境
# - api_key: 智谱 AI 的 API 密钥
# - base_url: 智谱 AI 的 API 接口地址
# - use_responses: 禁用 responses 库
run_config = RunConfig(model_provider = OpenAIProvider(
    api_key="your api key",
    base_url="https://open.bigmodel.cn/api/paas/v4/",
    use_responses=False)
)

# 导入并应用 nest_asyncio 来解决 Jupyter 中的异步运行问题
import nest_asyncio
nest_asyncio.apply()

# 同步运行 AI 助手
# - 让助手创作一首关于编程中递归的俳句
# - 使用之前配置的 run_config
result = Runner.run_sync(agent, "Write a haiku about recursion in programming.", run_config=run_config)
# 打印助手生成的俳句
print(result.final_output)

运行结果:

pip show openai-agents
Name: openai-agents
Version: 0.0.3
Summary: OpenAI Agents SDK
Home-page: https://github.com/openai/openai-agents-python
Author: 
Author-email: OpenAI <support@openai.com>
License-Expression: MIT
Location: d:\soft\anaconda\envs\oi_agents\Lib\site-packages
Editable project location: D:\llm\openai-agents-python
Requires: griffe, openai, pydantic, requests, types-requests, typing-extensions
Required-by: 
Note: you may need to restart the kernel to use updated packages.
from agents import Agent, Runner,RunConfig,OpenAIProvider

agent = Agent(name="Assistant", instructions="You are a helpful assistant",model="glm-4-flash")

run_config = RunConfig(model_provider = OpenAIProvider(
    api_key="your api key",
    base_url="https://open.bigmodel.cn/api/paas/v4/",
    use_responses=False)
)

import nest_asyncio
nest_asyncio.apply()

result = Runner.run_sync(agent, "Write a haiku about recursion in programming.",run_config=run_config)
print(result.final_output)
Branches of code weave,
Echoing loops in endless dance,
Logic's intricate maze.
1. 安装Anaconda环境 Anaconda是一个开源的Python发行版本,内置了许多常用的Python包和工具,如numpy、matplotlib等。我们可以通过Anaconda来管理我们的Python环境,方便我们对不同的项目使用不同的Python环境。 下载Anaconda:https://www.anaconda.com/products/distribution 安装Anaconda:下载安装包后,直接运行安装程序,按照提示完成安装即可。 2. 创建虚拟环境 在Anaconda中,我们可以通过创建虚拟环境来管理我们的Python环境。因为ml-agents需要使用Unity的Python环境,我们需要创建一个Unity相同的Python环境。 打开Anaconda Prompt终端,输入以下命令: ``` conda create -n unity python=3.6 ``` 这条命令会创建一个名为"unity"的虚拟环境,并安装Python 3.6版本。我们可以根据需要选择其他Python版本。 3. 激活虚拟环境 在创建完虚拟环境后,我们需要激活它才能使用。在Anaconda Prompt终端中,输入以下命令: ``` conda activate unity ``` 这条命令会激活名为"unity"的虚拟环境。 4. 安装ml-agents 在激活虚拟环境后,我们可以通过以下命令安装ml-agents: ``` pip install mlagents ``` 这条命令会安装ml-agents及其依赖的包。 5. 安装Unity ml-agents需要Unity一起使用,因此我们需要先安装Unity。 下载Unity:https://store.unity.com/download-nuo 安装Unity:下载安装包后,直接运行安装程序,按照提示完成安装即可。 6. 配置Unity 安装完Unity后,我们需要在Unity中导入ml-agents的插件。具体操作如下: 在Unity中创建一个新项目,选择2D或3D模板即可。 打开菜单栏"Window"->"Package Manager",在搜索框中输入"ml-agents",然后点击"Install"按钮进行安装安装完成后,打开菜单栏"Window"->"AI"->"ML-Agents"->"Agent Settings",在"Python"中选择我们刚才创建的虚拟环境路径,例如: ``` C:\Users\your_username\Anaconda3\envs\unity\python.exe ``` 7. 测试ml-agents环境 在安装和配置完毕后,我们可以进行简单的测试,验证ml-agents是否安装成功。 在Unity中,打开菜单栏"Window"->"AI"->"ML-Agents"->"Create New Agent",创建一个新的Agent。 添加一个"Behavior Name"为"test"的Behavior。 在"Behavior Parameters"中,将"Behavior Type"设置为"Default". 在"Behavior Parameters"中,将"Observation Shapes"设置为"Vector Observation",并将"Vector Observation Size"设置为1。 在"Behavior Parameters"中,将"Action Space Type"设置为"Discrete",并将"Discrete Branches"设置为2。 在"Behavior Parameters"中,将"Output"设置为"Action". 点击"Save"按钮保存。 在菜单栏"File"->"Save Project",保存Unity项目。 在Anaconda Prompt终端中,进入Unity项目的根目录,例如: ``` cd C:\Users\your_username\Documents\Unity Projects\test ``` 在终端中,输入以下命令: ``` mlagents-learn config\test.yaml --run-id=test --train ``` 这条命令会启动ml-agents的训练过程。 在训练过程中,我们可以在Unity中查看Agent的行为。在菜单栏"Window"->"AI"->"ML-Agents"->"Agent Monitor"中,选择刚才创建的Agent和Behavior,然后点击"Open"按钮打开Agent Monitor。 在Agent Monitor中,我们可以观察Agent的行为,以及训练过程中的reward等信息。 如果能够成功观察到Agent的行为,并且训练过程中reward等信息正常,说明ml-agents环境安装成功。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值