共轭矩阵与自共轭矩阵

共轭矩阵:

若存在一个方阵A的元素为aij,
那么A的共轭矩阵(A^H )的元素为(aji)^H,
也就是说A矩阵的元素先转置,后取共轭,就可以得到共轭矩阵A^H。

  • 举例子:A为【【3+i,2,1-2i】,
    【6-i,4-i,3-2i】,
    【7+i,4,1+2i】】,
    那么A^H为【【3-i,6+i,7-i】,
    【2,4+i,4】,
    【1+2i,3+2i,1-2i】】。

自共轭矩阵:

别名:Hermite阵、埃米尔特矩阵。
若存在一个方阵A的元素为aij,且aij = (aji)^H,
那么A为自共轭矩阵,
也就是说A = A^H。

  • 举例子:A为【【3,2+i】,
    【2-i,1】】,
    那么A为自共轭矩阵,且A的对角线元素必须为实数,而实对称矩阵是自共轭矩阵的一个特例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值